
Inference Attack in Distributed Optimization
via Interpolation and Manipulation

Jisheng Xu, Zhiyu He, Chongrong Fang, Jianping He, and Yunfeng Peng

Abstract— We study the problem of inference attack in
distributed optimization, with adversarial agents aiming to
obtain the sensitive information of some critical agent in
a network. Different from existing privacy-preserving and
resilient distributed optimization algorithms, we propose infer-
ence algorithms from the perspective of launching well-designed
attacks to help infer sensitive local information. The key idea is
that by utilizing the critical agent’s neighborhood information
and the predefined update protocol, adversarial agents can not
only interpolate the gradient of its local objective function, but
also manipulate it to converge to its own local minimizer. The
proposed algorithms can thus obtain approximations of the
gradient or the minimizer of the local objective of this critical
agent. We characterize the performance through interpolation
errors, as well as distances to the optimal value and optimal
point of the local objective. Numerical simulations are presented
to verify the effectiveness of these algorithms.

I. INTRODUCTION

Distributed optimization has attracted considerable inter-
ests recently [1]. Its main emphasis is on exploiting local
computations and communication to achieve collaborative
optimization of a global objective. However, the interaction
between neighboring agents can also cause the risk of
disclosing sensitive local information. Moreover, the overall
performance may be severely affected if there exist adversar-
ial attacks against participating agents. These issues motivate
the growing researches on privacy preservation and resilience
in distributed optimization.

Privacy preservation aims at preventing sensitive local
states, objectives, or constraints from being easily disclosed.
It has been investigated that obfuscating local information
with well-designed random noises is effective for protecting
sensitive information of agents in a network [2]. In this
regard, issues like achieving differential privacy [3] and
quantifying the relationship between estimation accuracy and
disclosure probability [4] are explored. The above studies
mainly focus on reducing data utility in face of honest-but-
curious [5] or external evasdroppers. The premise is that the
predefined protocols are not violated during execution.

Resilience against attack consists in guranteeing the per-
formance of cooperative optimization in the presence of
adversarial agents that deviate from the specified protocols.
To be concrete, some malicious agents may send extreme
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data to mislead other agents to some unwanted points [6].
To resist such adverse effects, various algorithms have been
proposed. Mean-Subsequence Reduced algorithm [6] enables
normal nodes to cooperatively optimize the sum or the
average of their local objective functions in spite of the
existence of some adversarial agents. Other algorithms like
[7]–[9] can detect the faults and isolate them based on
some global knowledge of the network. Existing resilient
algorithms focus on keeping the effectiveness of the network
rather than on privacy preservation in terms of attacks.

There have also been works that adopt the angle of attack-
ers and design manipulation mechanisms. For instance, Ding
et al. [10] and Wu et al. [11] propose attack algorithms to
steer the final state to an arbitrarily selected point by sending
fixed gradient estimations or states. However, an unexplored
perspective is how the adversarial agents can systematically
launch attacks to help effectively infer sensitive local infor-
mation. Consider a certain critical agent in the network. This
agent updates its states based on its local information and
the information received from its neighbors. In this case,
its malicious neighbors may exploit a finite sample of such
transmitted information to approximately infer sensitive local
objective functions. Moreover, through interacting with its
neighbors, the critical agent may be manipulated to expose
its local information actively and unconsciously.

Motivated by the aforementioned observations, we design
a novel neighborhood-data-based inference attack algorithm,
where adversarial agents desire to obtain sensitive infor-
mation from some critical neighbor agent in the network.
According to the amount of available information for at-
tackers, two scenarios are considered, i.e., attack with full
or partial information on the neighborhood, respectively.
To highlight central ideas, in this paper we investigate a
simplified setup of inference attack in the context of the
classical distributed gradient descent algorithm [12]. This
investigation can provide useful insights to launch similar
attacks against state-of-the-art privacy-preserving distributed
optimization algorithms.

Specifically, we first observe the states of the critical agent
and its neighbors, infer the gradient value of this critical
agent at several points, and obtain an approximation of the
gradient of its local function via polynomial interpolation.
Then, we alter the data sent from the adversarial agents to
the critical agent, affect the neighborhood data used by the
critical agent, and manipulate it into converging to its local
minimizer unwittingly, so that the critical agent gradually
broadcasts its sensitive information to all its neighbors.

It is worth mentioning that because the data sent by



the attackers to other agents is calculated according to the
normal protocol, most agents cannot identify the attackers.
In the full-information scenario, we establish the error bound
for the interpolation of the gradient of the sensitive local
objective, and indicate the optimal point of the network
in the presence of the proposed algorithm. In the partial-
information scenario, the upper bound of the estimation
error of our manipulation-based attack algorithm is explicitly
characterized, and the convergence rate of the attack is given.
The main contributions are summarized as follows.

• We investigate the problem where adversarial agents
systematically launch attacks to infer the sensitive local
information of some critical agent in a distributed
optimization network.

• We propose interpolation-based and manipulation-based
attack algorithms to obtain an approximation of the
gradient and infer the minimizer of the local objective
of the critical agent, respectively.

• We characterize the performance of the proposed attack
algorithms in terms of the approximation error of the
local gradient and the distances to the optimal value and
optimal point of the local objective.

The rest of this paper is organized as follows. Sec. II
defines the problem and gives preliminaries. Sec. III and IV
present the design and the analysis of the proposed algo-
rithms. Simulations are provided in Sec. V. Finally, Section
VI concludes this paper and discusses future directions.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a network described by an undirected, connected
graph G = (V, E), where V and E denote the set of agents
and the set of edges, respectively, and (i, j) ∈ E if and only if
agent i can communicate with agent j. For each agent i ∈ V ,
we define Ni as the set of its neighbors and use di = |Ni|
to denote its degree. Let N be the number of agents in G.

A. Problem Formulation

All the agents in the network aim to collaboratively solve
the following problem

min
x∈Rn

f(x) ≜
N∑
i=1

fi(x), (1)

via local computations and communication. In (1), f : Rn →
R is the global objective function, and fi(x) is the local
objective function of agent i and is only known by itself.

We assume that the majority of the agents are trustwor-
thy and faithfully participate in cooperative optimization.
However, there are some adversarial agents in Nc that may
deviate from the predefined update rules and aim to infer
the sensitive information of agent c, which is some critical
agent in the network. To be exact, the sensitive information
that these adversaries desire is

Ic ≜ {∇fc(x), x
∗
c},

where ∇fc(x) is the gradient of fc(x) and x∗
c is the mini-

mizer of fc(x). Without loss of generality, we assume that

agent m is the only malicious agent. If there exist multiple
adversaries, then the following designs can be extended
likewise. As one of the neighbors of agent c, agent m
usually have some common neighbors with agent c, i.e.,
Nc ∩ Nm ̸= ∅. These common neighbors can serve as a
source of information for agent m to infer Ic.

Let A be the set of all the common neighbors of agent c
and agent m, i.e., A ≜ Nc ∩Nm. Agent m is able to obtain
part of the information that is utilized by agent c from A,
since when agent j ∈ A sends xt

j to agent c at iteration t,
xt
j is also sent to agent m at the same time. Some basic

assumptions are given as follows.

Assumption 1. Every fi(x) is continuously differentiable
with L-Lipschitz continuous gradients, i.e., ∀u, v ∈ Rn,

∥∇fi(u)−∇fi(v)∥ ≤ L∥u− v∥.

Assumption 2. Every fi(x) is ζ-strongly convex on Rn.

Assumptions 1 and 2 are satisfied by typical problems
in applications, and they are also commonly made in the
literature, e.g., [13]–[15].

B. Distributed Gradient Descent

To highlight the central ideas and designs, we consider
inference attack algorithms specifically against a classic
gradient-based distributed optimization algorithm, i.e., Dis-
tributed Gradient Descent (DGD) [12]. As for the infer-
ence attacks against other privacy-preserving and resilient
distributed optimization algorithms, the proposed algorithms
can be extended likewise.

The key idea of DGD is combining gradient descent [16]
and average consensus [17]. It requires that each agent i
maintains a local state variable xi, which is an estimation
of the global variable x. At iteration t (t ∈ N), each agent i
sends xt

i to its neighbors j ∈ Ni, receives state variables xt
j

from them, and decides xt+1
i based on xt

j (j ∈ Ni) and the
local gradient according to

xt+1
i =

∑
j∈Ni

wijx
t
j − αt∇fi(x

t
i), (2)

where wij ∈ (0, 1) is the weight, and αt is the step size
used at iteration t. To ensure the effectiveness of (2), W ≜
(wij) ∈ Rn×n needs to be a doubly stochastic matrix. A
classic way of setting W is using lazy Metropolis weights
[1], i.e.,

wij =


(2max (di, dj))

−1, j ∈ Ni, j ̸= i,
0, j /∈ Ni, j ̸= i,
1−

∑
j∈Ni

wij , j = i.
(3)

With (3), agents need to exchange both the state variables
and the degrees during the iterations.

III. ATTACK WITH FULL INFORMATION ON Nc

In this section, we consider the case where the adversarial
agent m has access to full information on Nc and design
algorithms to approximately infer Ic.



A. Inference Based on Lagrange Interpolation

Lagrange Interpolation [18] uses a smooth polynomial to
approximate a function, assuming that the function values at
several discrete points are known. Armed with polynomial
interpolation, agent m can easily obtain an approximation
of ∇fc(x) based on the update protocols of agents in the
network. Without altering its own update protocol, agent m
seems to be normal in terms of its input and output, making
it undistinguishable among agents in the network. The details
are given as follows.

• Algorithm Design
Suppose all the agents in the network iterate with (2),

while agent m also records all the xt
j , j ∈ Nc at every

iteration t. To simplify the fomulation and emphasize the
idea, in this part we let x ∈ R. For the general case of x ∈
Rn, n ≥ 2, we can usemultivariate interpolation to derive a
high-dimensional extension of the proposed algorithm. We
define

Fc(x) ≜ ∇fc(x), ytc ≜ Fc(x
t
c).

It follows from (2) that

ytc =

∑
j∈Nc

wcjx
t
j − xt+1

c

αt
. (4)

During the iterations, agents need to exchange both the state
variables and the degrees, which makes wcj public in Nc.
Thus, (4) means any neighbor of agent c, including agent
m, can infer the gradient of agent c with the knowledge of
all the neighbors of agent c. Based on this idea, Lagrange
Interpolation Polynomial [18] is used to approximate the
derivative of the function fc(x).

At iteration T , agent m is able to obtain xt
c at iteration

t = 1, 2, · · · , T and all the ytc at iteration t = 0, 1, · · · , T −1
based on (4). We simply use (T −1) points, or {(xt

c, y
t
c)|t ∈

T }, T = {1, 2, · · · , T − 1}, to construct the approximation
of Fc. Define

Lc(x) ≜
∑
h∈T

wc(x)y
h
c

w′
c(x

h
c )(x− xh

c )
, (5)

where
wc(x) ≜

∏
h∈T

(x− xh
c ). (6)

Then Lc(x) is an approximation of Fc(x). We summarize
the details of such an attack in Algorithm 1.

• Performance Analysis
We provide the error bound of the aforementioned approx-

imation in the following theorem.

Theorem 1. Let a ≜ mint∈T xt
c and b ≜ maxt∈T xt

c.
Suppose that fc is (T + 1)-times differentiable and
maxx |f (T+1)

c (x)| = MT+1 < ∞. Then

|Fc(x)− Lc(x)| =
|wc(x)|

T !
|F (T )

c (ξ(x))| ≤ (b− a)T

T !
MT+1.

(7)

Proof. Based on Theorem 6.2 in [18], we have the following

Algorithm 1: Interpolation-based Attack

1 Initialize x0
i ;

2 for agent i ∈ V do
3 for t = 0, 1, 2, · · · , T do
4 Send xt

i to all the neighbors j ∈ Ni, gather
xt
j from them, and calculate xt+1

i with (2);
5 if i = m then Calculate ytc with (4);
6 end
7 if i = m then Construct Lc(x) with (5);
8 end

Output: Lc(x).

error expression for the Lagrange Interpolation

Fc(x)− Lc(x) =
wc(x)

T !
F (T )
c (ξ(x)) =

wc(x)

T !
f (T+1)
c (ξ(x)).

By the definition (6), we have ∀x ∈ [a, b],

|wc(x)| ≤ (b− a)T .

By referring to the conditions of Theorem 1, we have (7)
holds.

Remark 1. In privacy-preserving distributed optimization,
it is common to perturb local states with random noises,
thus reducing the risk of privacy disclosure. In this case,
the added noises may actually facilitate adversarial agents
to obtain informative points of ∇fc(x) with changing xt

c,
which leads to a better approximation.

Armed with (7), we can draw a conclusion that simply by
iterating with DGD as normal and recording some received
information, an agent m can get an approximation of the
gradient of the local function of its neighbor agent c with
the error bound given by (7).

B. Manipulation Based on DGD Iteration

Under the above settings, agent m is able to get an
approximation of ∇fc(x) using (T − 1) points. It is noted
that when agent m faithfully updates its local state with (2)
, xt

c converges to the global minimizer x∗ as t increases.
Therefore, the approximation function we obtain is based on
several points that move towards the global minimizer, thus
the approximation is rather accurate near to x∗.

However, we usually hope to obtain higher accuracy
when xc is close to x∗

c , so that we can estimate the local
minimizer x∗

c and local minimum ∇fc(x
∗
c) with relatively

high precision. To deal with this problem, we design the
following algorithm, by utilizing which, we have xt

c → x∗
c

as t increases. Thus, the (T − 1) points we sample can be
close to x∗

c .
• Algorithm Design
Suppose all the agents (including agent m) iterate with (2)

at iteration t, while agent m also calculates x̂t
m with

x̂t
m = −

∑
j∈Nc

wcj

wcm
xt
j +

1

wcm
xt
c. (8)



In other words, agent m maintains two states, i.e. x̂t
m and

xt
m. At every iteration t, agent m sends x̂t

m that update with
(8) to agent c, and sends xt

m that update with (2) to other
neighbors of agent m, where x̂t

m is used to manipulate the
iteration of agent c, and xt

m is used to keep the attack covert.
The aim of agent m is to make agent c believe itself

is working with DGD as normal, even though the truth is
that agent c is deceived to iterate with Gradient Descent
(GD) [16] algorithm, thus agent c slips into broadcasting
its information about its local function to all its neighbors
(including agent m) unknowingly, i.e., xt

i → x∗
c .

Besides, with xt
m updating as normal, agent m seems to

be a ordinary agent from the point of view of other agents
except agent c. In contrast, it seems to be agent c that is
abnormal, on account of the fact that in effect agent c is
updating with GD.

Remark 2. Actually, protocol (8) is only one way to ma-
nipulate xt

c in other to trick agent c to converge to its own
minimizer. In theory, by altering protocol (8), we can lead
agent c to any point we want. For example, by leading agent
c to some particular point, we can use the Chebyshev Polyno-
mial Approximation [19] to replace Lagrange Interpolation,
the strong boundedness of which may weaken the assumption
of Theorem 1 and reduce the approximation error.

• Performance Analysis
With the design, we have the following theorem naturally.

Theorem 2. If A = Nc and Assumptions 1 and 2 hold, with
(8), we have

lim
t→∞

xt
i = x∗

c , ∀i ∈ V.

Proof. Note that agent c and all the agents in Nc \ {m}
update their states by (2), which is equivalent to

xt+1
i = xt

i − αt∇fi(x
t
i) +

∑
j∈Ni

wijx
t
j − xt

i.

Let i be c. For agent c, since agent m sends x̂t
m to c instead

of xt
m, thus

xt+1
c = xt

c − αt∇fc(x
t
c) +

∑
j∈Nc\{m}

wcjx
t
j + wcmx̂t

m − xt
c,

(9)
where x̂t

m is updated with (8). Therefore, the update (9) is
transformed to

xt+1
c = xt

c − αt∇fc(x
t
c).

The above update rule is exactly GD algorithm. Therefore,
limt→∞ xt

c = x∗
c . For agent i ∈ Nc \ {m}, based on

Proposition 4.3 from [20] , we have limt→∞ xt
i = x∗

c .

Remark 3. In theory, agent m needs to collect all the
xt
j (j ∈ Nc) before it can calculate x̂t

m and then send
x̂t
m to agent c. However, in a real scenario, it is quite

common that there is volatile time delay in the network
due to the diverse communication distance and the unstable
transmission speed. Therefore, agent m may not necessarily
be the last one to send information to agent c, thus reducing

its risk of being detected.

The core idea of Theorem 2 is to make agent c mistakenly
think all its neighbors are identical to itself, so that agent
c “selfishly” converge to the minimizer of its own object
function. Because xt

c needs to be sent to all its neighbors at
iteration t, agent c guadually tells all its neighbors (including
agent m) about its own minimizer. It shows that with agent
m knowing all the xt

j in Nc, agent m can successfully
manipulate agent c to update its state variable with GD by
calculating x̂t

m with (8) and sending x̂t
m to agent c.

Theorem 2 reflects the effectiveness of (8). However, the
condition of Theorem 2, or A = Nc, is not always suitable
for real application scenarios. Usually A ⊂ Nc, so agent m
only knows all the xt

j , j ∈ A, making it difficult to use (8)
for manipulation. Thus, the following section is presented to
design an algorithm for that senario.

IV. ATTACK WITH PARTIAL INFORMATION ON Nc

In this section, we follow the main idea in the previous
section and present our algorithm with a new design, where
an adversarial agent m desires to obtain sensitive local infor-
mation of the critical agent c, even if agent m does not have
access to full information on Nc. Let B ≜ Nc \ ({m} ∪ A)
and then agent m has no access to any agent in B.

For any agent set S ⊂ V , ∀t ∈ N, we define

x̄t
S ≜

∑
k∈S xt

k

|S|
,

which denotes the average of local state variables in S at
iteration t. The core idea of our algorithm is to estimate
all the unknown local variables with the average of known
variables, i.e., to replace xt

j(j ∈ B) with x̄t
A. Then, similar

to the previous section, we adjust the data agent m sends to
agent c to trick it into performing inexact gradient descent
[21]. The details are given as follows.

A. Algorithm Design

Suppose agent m aims to infer x∗
c , while the others are

trustworthy agents that iterate by (2) as normal. Aiming at
making xt

c converge to x∗
c , agent m maintains a variable

x̂t
m =

1

wcm
(xt

c −
∑
j∈A

wcjx
t
j −

∑
j∈B

wcj x̄
t
A), (10)

where W = (wij) ∈ Rn×n is doubly stochastic, and wcj =
0,∀j /∈ Nc. Thus∑

j∈B
wcj = 1−

∑
j∈A

wcj − wcm.

Similar to the previous section, we suppose agent m updates
xt
m with (2) and sends it to neighbors except agent c, and

maintains the variable x̂t
m only for agent c. Thus, agent c

updates its state with

xt+1
c = xt

c − αt∇fc(x
t
c) +

∑
j∈Nc\{m}

wcjx
t
j + wcmx̂t

m − xt
c.



Algorithm 2: Manipulation-Based Attack

1 Initialize x0
i ;

2 for agent i ∈ V do
3 for t = 0, 1, 2, · · · , T do
4 if i = m then
5 Send xt

m to agents j ∈ Nm \ {c}, receive
xt
j from agents j ∈ Nm, and calculate

xt+1
m with (2);

6 if A = Nc then
7 Calculate x̂t

m with (8);
8 else
9 Calculate x̂t

m with (10);
10 end
11 Send x̂t

m to agent c. Record xt
c;

12 end
13 if i ̸= m then
14 Send xt

i to agents j ∈ Ni, receive xt
j from

them, and calculate xt+1
i with (2);

15 end
16 end
17 end

Output: {xt
c}, where xt

c → x∗
c .

For agent c, we define

ϵt ≜
∑

j∈Nc\{m}

wcjx
t
j + wcmx̂t

m − xt
c

=
∑
j∈B

wcjx
t
j +

∑
j∈A

wcjx
t
j + wcmx̂t

m − xt
c.

(11)

Then, we have

xt+1
c = xt

c − αt∇fc(x
t
c) + ϵt. (12)

Algorithm 2 summarizes the details of such an attack.

B. Convergence Analysis

In the following theorem, we use ϵt and αt to describe the
distance between xt

c and the target x∗
c , the proof of which

is inspired by [21]. The difference is that we use a general
step size αt instead of a fixed step size, thus our theorem
has a wider application scenario.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Let
{xt

c}t≥0 be the sequence of states of agent c when Algorithm
2 is implemented. Assume that αt < min{ 3

4L ,
√
2
ζ }, and αt

is non-increasing. Define

rt ≜
[ 2

2αt(1− Lαt)(ζαt)2
+ L

]
∥ϵt∥2,

ηt ≜
2− (ζαt)2

2
∈ (0, 1), κ ≜ fc(x

0
c)− fc(x

∗
c),

gt ≜ (η0 + 1)ηt0κ+ (rt + rt−1)
1− ηt−1

0

1− η0
+ rtη

t
0.

Then, for any t ≥ 0, we have

|fc(xt+1
c )− fc(x

t
c)| ≤ gt,

∥xt+1
c − xt

c∥ ≤ 2

L
gt +

∥ϵt∥2

2Lαt(1− Lαt)
,

∥xt
c − x∗

c∥ ≤ 2gt
Lζαt

+
∥ϵt∥2

2Lζ(αt)2(1− Lαt)
+

∥ϵt∥
ζαt

.

Proof. With (12), we have

∇fc(x
t
c) =

1

αt
(xt

c − xt+1
c + ϵt). (13)

With Assumption 1, we have

fc(x
t+1
c )−fc(x

t
c) ≤ ∇fc(x

t
c)

T (xt+1
c −xt

c)+
L

2
∥xt+1

c −xt
c∥2,
(14)

fc(x
t
c)− fc(x

∗
c) ≤

L

2
∥xt

c − x∗
c∥2. (15)

With Assumption 2, we have

∇fc(x
t
c)

T (xt
c − x∗

c) ≥ ζ∥xt
c − x∗

c∥2. (16)

Combining (13) with (14), we obtain

fc(x
t+1
c )− fc(x

t
c)

≤ L

2
∥xt+1

c − xt
c∥2 +

1

αt
(xt

c − xt+1
c + ϵt)T (xt+1

c − xt
c)

≤ (
L

2
− 1

αt
)∥xt+1

c − xt
c∥2 +

1

αt
∥ϵt∥ · ∥xt+1

c − xt
c∥.

Since αt < 3
4L < 1

L , we have

∥ϵt∥ · ∥xt+1
c − xt

c∥ <
1

2

[ ∥ϵt∥2

2− 2Lαt
+

∥xt+1
c − xt

c∥2

(2− 2Lαt)−1

]
,

thus (14) is transformed into

fc(x
t+1
c )− fc(x

t
c) ≤ −L

2
∥xt+1

c − xt
c∥2 +

∥ϵt∥2

4αt(1− Lαt)
,

and it is equivalent to

∥xt+1
c − xt

c∥2 ≤ 2

L

[
fc(x

t
c)− fc(x

t+1
c ) +

∥ϵt∥2

4αt(1− Lαt)

]
.

(17)
Using (13) and (16), we obtain

∥xt
c − x∗

c∥2 ≤ 1

ζ
∇fc(x

t
c)

T (xt
c − x∗

c)

≤ 1

ζαt
∥xt

c − xt+1
c + ϵt∥ · ∥xt

c − x∗
c∥,

thus
∥xt

c − x∗
c∥ ≤ 1

ζαt
∥xt

c − xt+1
c + ϵt∥. (18)

Now using (15), (17), and (18), we have

fc(x
t
c)− fc(x

∗
c) ≤

L

2
∥xt

c − x∗
c∥2

≤ L∥xt
c − xt+1

c + ϵt∥2

2(ζαt)2
≤ L∥xt

c − xt+1
c ∥2 + L∥ϵt∥2

(ζαt)2

≤
2
[
fc(x

t
c)− fc(x

t+1
c )

]
(ζαt)2

+
[ 2

2αt(1− Lαt)(ζαt)2
+ L

]
∥ϵt∥2

≤ 2

(ζαt)2

[
fc(x

t
c)− fc(x

∗
c)−

(
fc(x

t+1
c )− fc(x

∗
c)
)]

+ rt,



then we obtain

fc(x
t+1
c )− fc(x

∗
c) ≤ ηt[fc(x

t
c)− fc(x

∗
c)] + rt. (19)

Applying (19) recursively, we have

fc(x
t+1
c )− fc(x

∗
c)

≤
t∏

h=0

ηt−h[fc(x
0
c)− fc(x

∗
c)] +

t∑
h=0

rt−h

h−1∏
k=0

ηt−k,

≤ ηt+1
0 κ+

t∑
h=0

rt−hη
h
0 ≤ ηt+1

0 κ+ rt
1− ηt0
1− η0

,

thus

|fc(xt
c)− fc(x

t+1
c )| ≤ fc(x

t
c)− fc(x

∗
c) + f(xt+1

c )− fc(x
∗
c)

≤ (η0 + 1)ηt0κ+ (rt + rt−1)
1− ηt−1

0

1− η0
+ rtη

t
0 = gt.

Now using (17), we have

∥xt+1
c − xt

c∥2 ≤ 2

L

∣∣∣fc(xt
c)− fc(x

t+1
c )

∣∣∣+ ∥ϵt∥2

2Lαt(1− Lαt)

≤ 2

L
gt +

∥ϵt∥2

2Lαt(1− Lαt)
.

With (18), we obtain

∥xt
c − x∗

c∥ ≤ 1

ζαt
∥xt

c − xt+1
c ∥+ ∥ϵt∥

ζαt

≤ 2gt
Lζαt

+
∥ϵt∥2

2Lζ(αt)2(1− Lαt)
+

∥ϵt∥
ζαt

.

Armed with Theorem 3, agent m can infer the sensitive
information x∗

c , with the error bound determined by ϵt and
αt. Under the setting of Theorem 3, We define

dti ≜ max
j,k∈Ni

∥xt
j − xt

k∥, (20)

which reflects the similarity of the neighbors of agent i at
iteration t. To use Theorem 3 in application, we specify αt

to be a decaying step size, where

αt =

{
1/t, t ∈ N+,
1, t ∈ Z \ N+.

(21)

Assume that dti ≤ O(t−p) for some p > 2, then we have the
following corollary on the convergence rates.

Corollary 1. (Sublinear Convergence) If the conditions of
Theorem 3 hold, αt is calculated by (21), and for some p >
2,∀t ≥ 1, dtc ≤ O(1/tp), then we have

|fc(xt+1
c )− fc(x

t
c)| ≤ O(t3−2p),

∥xt+1
c − xt

c∥ ≤ O(t3−2p), ∥xt
c − x∗

c∥ ≤ O(t1−p).

Proof. By plugging (10) into (11), we have

ϵt =
∑
j∈B

wcj(x
t
j − x̄t

A).

With the fact that A ⊂ Nc,B ⊂ Nc, we have ∀j ∈ B, k ∈ A,
there holds

∥xt
j − xt

k∥ ≤ O(
1

tp
).

Hence, by the definition of ϵt, we have ∀t ≥ 1,

∥ϵt∥ =
∥∥∥∑

j∈B
wcj(x

t
j − x̄t

A)
∥∥∥ ≤

∑
j∈B

∥∥wcj(x
t
j − x̄t

A)
∥∥

≤
∑
j∈B

wcj

∑
k∈A ∥xt

j − xt
k∥

|A|
≤

∑
j∈B

wcjO(
1

tp
) ≤ O(

1

tp
).

With (21), we have

η0 = 1− ζ2

2
∈ (0, 1),

1− ηt−1
0

1− η0
∈ (0, 1), ηt0 ∈ (0, 1),

thus

O(gt) ≤ O(ηt+1
0 )+O(rt) ≤ O(ηt+1

0 )+O(t3∥ϵt∥2) ≤ O(t3−2p).

With Theorem 3, we obtain

|fc(xt+1
c )− fc(x

t
c)| ≤ O(gt) ≤ O(t3−2p),

∥xt+1
c − xt

c∥ ≤ O(gt) +O(t∥ϵt∥2) ≤ O(t3−2p),

∥xt
c − x∗

c∥ ≤ O(tgt) +O(t2∥ϵt∥2) +O(t∥ϵt∥) ≤ O(t1−p).

V. NUMERICAL EVALUATIONS

We use two experiments to illustrate the performance of
the proposed attack algorithms. Consider an undirected graph
with N = 30 agents. Let m = 1, c = 15, which means that
the first agent is the attacker, while the 15th agent is the
critical agent being attacked. In the implementations, agent
m is set as a neighbor of agent c, and for each agent j ∈
Nc \ {m}, we connect agent j and agent m with a certain
probability ρ. In the full-information scenario, we have ρ =
1. In the partial-information scenario, we set ρ = 0.5. For
the remaining agents, we set the connectivity probability as
0.4. We use the following convex function as the local object
function of agent i ∈ V \ {c}, i.e.,

fi(x) = aie
bix + cie

−dix, x ∈ R,

where ai, bi, di ∼ N (1, 0.5), ci ∼ N (3, 0.5) are drawn from
the Gaussian distribution. For agent c, we set ac = bc =
dc = 1, cc = 5, i.e.,

fc(x) = ex + 5e−x, x ∈ R.

We set the local object function of agent c differently to
make x∗

c (the local minimizer of agent c) far from x∗ (the
global minimizer), so that we can illustrate the effectiveness
of the manipulation more clearly.

In the first experiment, we randomly sample T − 1 = 4
points from all the points that agent m obtained from agent c
to approximate the gradient of the local function of agent c.
The result is shown in Fig 1. It indicates that the approxima-
tion algorithm is rather accurate when the variable is close
to the points we sampled. The approximation performance
is unsatisfactory at points away from the sampled points,
because it is difficult for agent m to estimate ∇fc(x) there
due to the lack of information.

In the second experiment, we manipulate agent c to con-
verge to its local minimizer. Fig. 2(a) and Fig. 2(b) illustrate
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Fig. 1. Simulation results of Algorithm 1.
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Fig. 2. Simulation results of Algorithm 2 in full-information and partial-
information scenarios.

the performance in full-information scenario and partial-
information scenario, seperately. They show that when ma-
nipulated by agent m, agent c moves towards its local
minimizer instead of the global minimizer. Since the attack
is more accurate with full information, the performance of
the full-information case is better than that of the partial-
information case.

VI. CONCLUSION

We investigated the inference attack based on neigh-
borhood information in distributed optimization, where ad-
versarial agents exploit attack mechanisms to effectively
obtain the sensitive information of some critical agent. In
the full-information scenario, we presented an algorithm to
approximate the gradient of the local objective and trick this
critical agent to converge to its own minimizer. In the partial-
information scenario, we proposed an attack algorithm based
on the average of the collected data and proved that the
proposed algorithm can mislead the object agent to its own
minimizer with a sublinear convergence rate.

There are many issues worthy of further investigations.
In this paper, we assume that the adversaries and the target
agent are direct neighbors, i.e., 1-hop neighbors. Thus, we
will consider extending our attack algorithms for problems
in k-hop neighbors by using information set method [7].
More broadly, research is needed to determine the effect of
inference attacks in the presence of other known defenses.
Besides, a potential extension is to develop similar attacks
for problems with nonconvex local objective functions over
time-varying graphs.
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injection attack on decentralized optimization,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, 2018, pp. 3644–3648.

[12] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[13] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 3, pp. 1245–1260, 2017.

[14] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric conver-
gence for distributed optimization over time-varying graphs,” SIAM
Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.
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