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Abstract— The data-driven attack strategies recently have
received much attention when the full knowledge of the
system model is unknown or difficult to be obtained for the
adversary. Note that despite the critical parameters of the
system model being unavailable for the adversary, the existing
data-driven attack methods still depend on the linearity of the
unknown system model. In this paper, we design a completely
model-free attack strategy where the adversary with limited
capability aims to compromise state variables such that the
output value follows the expected trajectory. Specifically, we
first construct a zeroth-order feedback optimization frame-
work and uninterruptedly use probing signals for real-time
measurements. Then, we iteratively update the attack signals
along the composite direction of the gradient estimates of the
objective function evaluations and the projected gradients.
These objective function evaluations can be obtained only
by real-time measurements. Furthermore, we characterize the
optimality of these solutions via the optimality gap, which is
affected by the dimensions of the attack signal, the iterations
of solutions, and the convergence rate of the system. Extensive
simulations are conducted to show the effectiveness of the
proposed attack strategy.

I. INTRODUCTION

Networked control systems (NCSs) are extensively ap-
plied in many practical systems, such as mobile robots,
smart grids, unmanned aerial vehicles, and remote diagnos-
tics, which are spatially distributed systems where commu-
nication networks build bridges for information transmis-
sion among physical components [1]–[3]. Recently, secu-
rity issues have been becoming increasingly prominent in
NCSs since communication networks as well as physical
components are vulnerable to cyber attacks, which include
Denial-of-Service (DoS) attacks [4] and false data injection
(FDI) attacks [5]. Especially, the adversary who launches
well-crafted FDI attacks can cause serious damage to NCSs
while keeping stealthy. Hence, to defend against such kinds
of intelligent attacks, studying the influence of potential
FDI attack strategies on NCSs is beneficial to analyze
the system vulnerabilities and design countermeasures to
improve system security.

Lots of literature has been devoted to designing the
model-based FDI attack strategy [6]–[11]. For instance,

†: The Department of Automation, Shanghai Jiao Tong University,
Key Laboratory of System Control and Information Processing, Ministry
of Education of China, and Shanghai Engineering Research Center of
Intelligent Control and Management, Shanghai 200240, China. E-mails:
{xyl.sjtu, crfang, jphe}@sjtu.edu.cn.

‡: The State Key Laboratory of Industrial Control Technology and
Institute of Cyberspace Research, Zhejiang University, China. E-mail:
zccsq90@gmail.com.

when the adversary knows information about the system
model and other critical information, such as statistical
properties of noise and the controller feedback matrix, Chen
et al. [6] formulated a linear quadratic cost function to
obtain the optimal attack sequences over the finite time
interval, where the adversary aims to move the system
state to a target state subject to the detection-avoidance
constraint. With the prior information on the system model,
Guo et al. [7] proposed an innovation-based linear attack
strategy and formulated a two-stage optimization problem
to obtain the worse-case attack policy. Wang constructed
an optimal attack strategy to deteriorate the performance
of fault detectors by solving coupled backward recursive
Riccati difference equations (RDEs) [8]. In [9], the FDI at-
tack strategy against remote state estimation with sensor-to-
estimator communication rate constraint was designed. Note
that the design of the above FDI attack strategies is mostly
based on the full knowledge of the exact system model.
However, when the system model changes dynamically with
a complex environment or the exact prior information on the
system model is difficult to be acquired for the adversary,
the model-based attack strategies could be infeasible.

Therefore, there are lots of researchers aiming at de-
signing data-driven FDI attack strategies [12]–[15]. Kim et
al. [13] extended the work in [5] and presented two data-
driven attack strategies based on subspace methods without
the knowledge of the system parameter matrix. An et al.
[14] formulated the attack goal as a data-based L2-gain
composite optimization problem and proposed a new mul-
tiobjective adaptive dynamic programming (ADP) method
for launching the attack policy. Zhao et al. [15] proposed an
undetected FDI attack strategy based on the subspace iden-
tification technique to maximize the state estimation error
with the constraint of undetectability and energy limitation.
Note that the above attack strategies mostly require offline
observations of linear systems in the finite time interval,
exploit these observations to regress the parameter matrices
of the linear system model. However, when the system has
complicated nonlinearity, it is hard for the adversary to
regress the critical system matrix parameters. Moreover, the
linearity of the system model is still a crucial and implicit
prior condition for these data-driven attack strategies.

Motivated by the above observations, we focus on de-
signing a completely model-free attack strategy without any
prior information about the system model and dependence
on linear models. The adversary with limited capacity de-
sires to steer the output value to a defined trajectory where



only real-time measurements can be obtained. The main
contributions are summarized as follows.

• We construct a feedback optimization framework for
the design of the attack strategy, where the adversary
with limited capacity has no prior information on the
system model.

• We propose a model-free attack strategy that drives the
output value to the expected output trajectory based on
the objective function evaluations for directly updating
the attack signal instead of learning the parameters
of the system model. Moreover, the attack signals
are constrained within the feasible solutions of the
projected gradient descent method.

• We theoretically characterize the optimality of solu-
tions via the optimality gap and analyze the impact on
the optimality of the dimensions of the attack signal,
the iterations of solutions, and the convergence rate of
the dynamical system.

The rest of the paper is organized as follows. Section
II introduces the system model and the adversary model,
and formulates the FDI attack design problem. In Section
III, the model-free attack strategy is designed and the
optimality gap is analyzed. Simulation results are presented
in Section IV. Finally, we conclude our work in Section V.

II. PROBLEM FORMULATION

A. System Dynamic Model & Adversary Model

Consider a discrete-time dynamical system

xk+1 =f(xk, uk),

yk =g(xk),
(1)

where xk ∈ Rn is the system state at time k, uk ∈ Rm is
the system input, yk ∈ Rq is the system output.

Assumption 1: The system (1) is stable under the control
of system input uk,∀k ∈ N.

Consider the adversary can compromise the stable system
and manipulate its states xk arbitrarily and aims to steer the
output value yak to its expected trajectory. The dynamical
system under attacks can be rewritten as

xa
k+1 =f(xa

k, uk) + Γθk,

yak =g(xa
k),

(2)

where the attack selection matrix Γ ∈ Rn×p is defined as
the non-zero columns of diag(γ1, . . . , γn) with the binary
variable γi = 1 if the i-th dimensional state is compromised,
and θk ∈ Rp is the injected false data. Then, we make the
following assumption about the ability of the adversary.

Assumption 2: The capacity of the adversary is limited,
i.e., θTk θk ≤ R, where R is the upper bound of attack energy.

Assumption 2 is common for the energy-constrained
adversaries [16]. With Assumption 1 and 2, it is easy to
obtain the following lemma to show that the compromised
system (6) is still stable and controllable with the bounded
FDI attacks.

Lemma 1: For the compromised system (6), there exists
a unique steady-state map xa

ss : Rm × Rp → Rn such that
∀θ, f ′(xa

ss(u, θ), u, θ) ≜ f(xa
ss(u, θ), u) + Γθ = xa

ss(u, θ).
The map xa

ss(u, θ) is Mx-Lipschitz with respect to θ, and
the function g(xa) is Mg-Lipschitz with respect to xa.

Remark 1: Lemma 1 is similar to [17] for guaranteeing
the stability of the system. If the system under the bounded
FDI attacks has no unique steady-state map xa

ss, it is obvious
that the system will diverse and even the original system
(1) is unstable. The properties of the map xa

ss(u, θ) can
be ensured by the implicit function theorem [18, Theorem
1B.1]. According to Lemma 1, in the steady state we have

ya = g(xa
ss(u, θ)) ≜ h(u, θ). (3)

Additionally, the Lyapunov theorem in [19, Theorem 2.7],
guarantees that there exists a Lyapunov function V : Rn ×
Rm × Rp → R and parameters α1, α2, α3 > 0 such that

α1∥xa − xa
ss(u, θ)∥2 ≤ V (xa, u, θ) ≤ α2∥xa − xa

ss(u, θ)∥2,
(4)

V (f ′(xa
ss(u, θ), u, θ))− V (xa, u, θ) ≤ −α3∥xa − xa

ss(u, θ)∥2,
(5)

Based on (4) and (5), the rate of the change in one step of
the function value V (xa, u, θ) as

µ ≜
2α2

α1
(1− α3

α2
). (6)

Assumption 3: The convergence rate µ satisfies µ < 1.
The smaller µ is, the faster the system converges to the

steady-state [20]. The formal interpretation of µ will be
presented later in Lemma 4.

B. Problem Formulation

Since the prior condition that the system is linear is
hard to obtain, it will be difficult to regress the critical
system parameter matrix for the data-driven attack strategies.
In contrast, in this paper, we aim to design a completely
model-free attack strategy, which is independent of the
characteristics and parameters of the system model itself.

In this work, we consider that the adversary’s objective is
to steer the output value yak to follow its expected trajectory
ȳk as closely as possible. We also consider that the adversary
has limited energy. Therefore, the total goal of adversaries
is to reduce both the error between the true system output
and expected trajectory and the consumed attack energy as
much as possible. In addition, since our proposed attack
strategy performs the optimization with the same objective
function at each time k, we omit the subscript k and formally
formulate the problem as

P1 : minθ Φ(θ, ya) = ∥ya − ȳ∥+ θTQθ (7)
s.t. ya = h(u, θ),

θTθ ≤ R,

where ya = h(u, θ) is the steady-state map under attacks in
(6) to guarantee the stability of the compromised system (6),
ȳ is the expected trajectory and Q ∈ Rp×p is the positive
definite weight matrix chosen by the adversary according



to the tradeoff between the limited attack capability and
tracking deviation ∥ya − ȳ∥. We also propose a common
assumption for the optimized objective function as follows.

Assumption 4: The function Φ(θ, ya) is M -Lipschitz
with respect to θ, My-Lipschitz with respect to ya, and
infθ,ya Φ(θ, ya) > −∞.

The challenges of solving problem P1 come from two
aspects. One is the nonlinearity of the system model. For
the unknown nonlinear system model (6), it is hard to regress
its critical system parameters. The other is how to use
the compromised measurements to guide the output value
to move along the desired trajectory while reducing the
consumed attack energy as much as possible. Since h(u, θ)
is unknown, it is difficult to directly obtain the gradients
of the objective function with respect to the independent
variable θ to solve problem P1.

The key idea of the zeroth-order optimization is to utilize
the objective function evaluations to construct gradient esti-
mates, thus avoiding using the gradients directly. Motivated
by the idea of a zeroth-order optimization framework, we
aim to construct the gradient estimates of the objective
function to solve problem P1. Different from the traditional
zeroth-order optimization framework for the design of the
controller with non-manipulated measurements, our design
focuses on utilizing the compromised measurements to
design the attack signal in the original control systems with
designed controllers. Herein, we only explore the model-
free attack strategy without detectors and the attack design
under detector constraints will be left as future work.

III. MODEL-FREE ATTACK STRATEGY DESIGN

In this section, we first introduce the zeroth-order opti-
mization framework, which is the basis of our attack strategy
design. Then, we utilize the real-time output values to design
the attack signal. Finally, we analyze the optimality of the
proposed attack strategy.

A. Preliminaries of Zeroth-order Optimization

The attack strategy design in this paper is inspired by the
gradient estimates based on the residual feedback in [21].

For an objective function Φ(w) : Rp → R, the gradient
estimate proposed in [21] is

∇̂Φ(wk) =
vk
δ
(Φ(wk + δvk)− Φ(wk−1 + δvk−1)), (8)

where vk and vk−1 are independent random vectors selected
uniformly from the unit sphere Sp ≜ {vk ∈ Rp : ∥vk∥ = 1},
i.e., vk ∼ U(Sp) and δ > 0 is the smoothing parameter.
Note that only a new objective function evaluation needs to
be computed each time in (8), because the objective value
evaluated at the previous time k− 1 is reused at the current
time k.

According to [21, Lemma 5], ∇̂Φ(wk) in (8) is unbiased
estimate of the gradient of the Gaussian smooth approxima-
tion Φδ(w) for Φ(w) at wk, where

Φδ(w) = Ev∼U(Sp)[Φ(w + δv)]. (9)

The properties of Φδ(w) are shown as follows.
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Fig. 1. The schematic of model-free attack strategy design

Lemma 2 ( [17]): If Φδ(w) : Rp → R is M−Lipschitz,
then for any w ∈ Rp, δ > 0 and Φδ(w) defined in (9),

Ev∼U(Sp)[
p

δ
Φ(w + δv)v] =∇Φδ(w), (10a)

|Φδ(w)− Φ(w)| ≤Mδ, (10b)

∥∇Φδ(w)−∇Φ(w)∥ ≤Mp

δ
. (10c)

From (10c), we know Φδ(w) is Mp
δ -smooth, i.e., its gradient

∇Φδ(w) is Mp
δ -Lipschitz continuous.

B. Attack Strategy Design

The proposed attack strategy iteratively updates attack
inputs along the composite direction of the negative gradient
estimates of the objective function and the projected gradi-
ents. Such a design only utilizes the real-time measurements
(i.e., the system output values) and thus makes the attack
strategy intrinsically model-free.

We denote U as the constraint set for the limited capability
of the adversary in problem P1. With the zeroth-order
optimization framework, the proposed model-free attack
strategy can be divided into three steps and the schematic
of the attack strategy design is shown in Fig.1.
Step 1: Compute the gradient estimate ϕ̃k

ϕ̃k =
pvk
δ

[Φ(θk, y
a
k+1)− Φ(θk−1, y

a
k)], (11)

where vk and vk−1 are independent probing signals and
follow the uniform distribution from the Euclidean unit
sphere Sp, i.e., vk ∼ U(Sp). Since only the real-time
measurements are available for the adversary and it is hard
to directly compute the gradients of the objective function
in problem P1, we first utilize the probing signal vk for
measurements, which can be used to construct the objective
function evaluations Φ(θk, y

a
k+1) and Φ(θk−1, y

a
k) at the

current and previous time. Herein, the historic function
evaluation Φ(θk−1, y

a
k) is reused at time k + 1. Then we

compute the gradient estimates ϕ̃k of the objective function
by these evaluations with (11).
Step 2: Update and constrain the obtained solution wk+1

wk+1 = ΠU [wk − ηϕ̃k], (12)

where ΠU [·] is the projection onto the constrained set U , i.e.,
ΠU [l1] ≡ argminl2∈U ∥l1 − l2∥, and step-size 0 < η < 1.
To constrain the obtained solutions in the feasible region set
by U , we turn to the projected gradient descent method for
updating the solution wk+1 at time k + 1 and solving the



optimization problem P1 with constraints.
Step 3: Update the attack signal θk+1

θk+1 = wk+1 + δvk+1. (13)

Finally, the attack signal θk+1 can be obtained by perturbing
the solution wk+1 with the probing signals δvk+1.

C. Performance Analysis

Let Φ(θk) ≜ Φ(θk, h(uk, θk)). We use the optimality gap,
i.e.,

1

T

T∑
k=1

Ev[T ]
[Φ(θk)− Φ(θ∗k)] (14)

to measure the optimality of the proposed attack strategy at
θk where θ∗k is the optimal solution at time k and Ev[k]

is
the expectation of v[k] with v[k] ≜ (v0, . . . , vk).

Before we characterize (14), we provide the upper bound
of ∥wk+1−w∗

k+1∥2 and ∥wk+1−wk∥2, and some supporting
lemmas for auxiliary analysis. We have

∥wk+1 − w∗
k+1∥2 =∥ΠU [wk − ηϕ̃k]− w∗

k+1∥2
(s.1)

≤ ∥wk − ηϕ̃k − w∗
k+1∥2

(s.2)

≤ 2∥wk − w∗
k+1∥2 + 2η2∥ϕ̃k∥2, (15)

where (s.1) follows from the projection property [22,
Lemma 2.4] and [23], i.e., for any l1 ∈ Rp and all l2 ∈ U ,
∥ΠU [l1] − l2∥ ≤ ∥l1 − l2∥, and (s.2) follows the fact that
∥a− b∥2 ≤ 2(∥a∥2 + ∥b∥2). Similarly, we have

∥wk+1 − wk∥2 =∥ΠU [wk − ηϕ̃k]− wk∥2

≤∥wk − ηϕ̃k − wk∥2

≤η2∥ϕ̃k∥2. (16)

Note that we replace the steady output value h(uk, θk)
with the real-time output value yak+1 to enter the closed-
loop zeroth-order feedback optimization framework. It is
unavoidable for the system to produce the error eΦ(xa

k, θk),
which is defined as

eΦ(x
a
k, θk) = Φ(θk, y

a
k+1)− Φ(θk, h(uk, θk)). (17)

First, we analyze the upper bound of the error eΦ(xa
k, θk)

and the recursive inequalities of two critical variables, i.e.,
Ev[k]

[V (xa
k, uk, θk)] and Ev[k]

[∥ϕ̃k∥2].
Lemma 3: If Assumptions 1− 3 hold, then

|eΦ(xa
k, θk)|2 ≤

µM2
yM

2
g

2α2
V (xa

k, uk, θk). (18)

Lemma 4: If Assumptions 1−3 hold, with (11), (12) and
(13), then

Ev[k]
[V (xa

k, uk, θk)]

≤ µEv[k]
[V (xa

k−1, uk−1, θk−1)]

+ 4α2η
2M2

xEv[k]
[∥ϕ̃k−1∥2] + 16α2δ

2M2
x (19)

Lemma 5: If Assumptions 1 − 3 hold, with (11), (12),
and (13), then

Ev[k]
[∥ϕ̃k∥2] ≤

6η2p2M2

δ2
Ev[k]

[∥ϕ̃k−1∥2] + 24p2M2

+
3µp2M2

yM
2
g

2α2δ2
(Ev[k]

[V (xa
k, uk, θk)]

+ Ev[k]
[V (xa

k−1, uk−1, θk−1)]) (20)
The proof of Lemma 3 − 5 follows from [17], where

the differences lie in the additional independent variable
θ and the compromised states. Here, the proof of Lemma
4 is shown in Appendix V-A and we omit the proof of
Lemma 3 and Lemma 5 due to the limited space. Lemma
3 quantifies the close relationship between Φ(θk, y

a
k+1) and

Φ(θk, h(uk, θk)). Lemma 4 measures the proximity of the
current state xa

k compared with the steady state xa
ss(uk, θk).

Lemma 5 reflects the first order smoothness of the objective
function evaluation Φ(θk, y

a
k+1) at solution wk.

Next, we provide the following theorem to characterize
the optimality of the obtained solutions.

Theorem 1: Suppose that Assumptions 1 − 3 hold, for
any given precision ϵ > 0 such that |Φδ(θ)−Φ(θ)| ≤ ϵ, let
δ = ϵ

M and η = κϵ
pT with κ ∈ (0, κ∗), where

κ∗ = O

(
min

{
T
√

µ(1 + µ)

µ
,

(1− µ)T√
µ(1 + µ)

})
,

then we have

1

T

T∑
k=1

Ev[T ]
[Φ(θk)− Φ(θ∗k)]

= O
(
p2(1 + µ)(1 +

√
1 + µ)

(1− ρ)T 2
+

µp2

T

)
, (21)

where ρ ∈ (0, 1) is the maximum eigenvalue of matrix P

given by (28), i.e., P =

[
p11

√
p12p21√

p12p21 p22

]
with

p11 =
6p2η2

δ2
(M2 + µM2

xM
2
yM

2
g ),

p12 =
3µp2M2

yM
2
g

2α2δ2
(1 + µ),

p21 =4α2η
2M2

x ,

p22 =µ,

d1 =24p2(M2 + µM2
xM

2
yM

2
g ),

d2 =16α2δ
2M2

x . (22)

Moreover,

ρ = O
(
max

{
(1− µ)2

1 + µ
, µ

}
+ 1− µ

)
.

Proof: Please see Appendix V-B.
Theorem 1 shows the optimality gap is related to the

dimensions p of the attack signal, the convergence rate µ of
the system, and the iterations T . As the iterations T increase
gradually, the optimality gap decreases and it can even decay
to zero as long as T is large enough.



IV. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed attack strategy, i.e., we analyze the tracking perfor-
mance and the optimality of solutions.

Consider the following system

xk+1 =Axk +Buk,

yk =Cxk,
(23)

where uk = −Kxk with K = [1.5 − 1.5; 0.2 0.1], A =
[0 1; 2 − 1], B = [0 0; 1 0], C = [1 1]. It is stable,
controllable, and observable. We set the initial state x1 =
[1;−3], the probing signal vk = [cos(k); sin(k)]/

√
2 to

satisfy ∥vk∥ = 1, the initial solution w1 is random and
follows the standard uniform distribution. The smoothing
parameter δ = 10−3, the step-size η = 7.5 × 10−5, the
attack selection matrix Γ = I2 and the weight matrix Q =
3I2 where I2 is the two-dimensional diagonal unit matrix.
We define two types of the expected output trajectories,
including the static trajectory ȳ1 = −1.5 and dynamic
output trajectory ȳ2 = 10−4k with respect to time k. Each
data point in the following figures represents an ensemble
average of 50 trials.

First, we analyze the tracking performance with different
desired output trajectories. As shown in Fig. 2, the output
value of the system under the proposed attack strategy has
the ability of tracking the expected output trajectory whether
the trajectory is static or dynamic. Especially, Fig. 2(a) and
Fig. 2(b) illustrate that the output values fluctuate along the
desired trajectory. Note that the phenomenon of fluctuation
is normal since the output values are constantly perturbed
by the time-varying probing signal vk.

Then, we illustrate the optimality of solutions via the
optimality gap Φ(θk) − Φ(θ∗), which is shown in Fig. 3.
When the expected trajectory is static, i.e., ȳ1 = −1.5,
we find that the obtained solution is close to the optimal
solution and the optimality gap converges to about 0.02,
shown in Fig. 3(a). When the expected trajectory is time-
varying, i.e., ȳ2 = 10−4k, in Fig. 3(b), the obtained
solutions also approach the optimal one and the upper
bound of the optimality gap does not exceed 0.11. To sum
up, the proposed model-free attack strategy can obtain the
suboptimal attack signals that drive the output values to
the desired output trajectory by only utilizing the real-time
compromised measurements.

V. CONCLUSION

We considered the problem of designing a model-free at-
tack strategy where the adversary with limited capacity aims
to make the output value follow the desired trajectory with-
out any prior system model information. The designed attack
strategy is model-free since only real-time measurements are
required. These measurements are used to compute objective
function evaluations and gradient estimates are constructed
to update the attack signal based on these objective function
evaluations at the previous and current time. Moreover,
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Fig. 2. Tracking performance under different expected output trajectories.
(a) Static trajectory ȳ1 = −1.5 (b) Dynamic trajectory ȳ2 = 10−4k

considering the adversary has limited capability, we con-
strained the obtained solutions within the feasible region by
the projected gradient descent method. Finally, we analyzed
the optimality of solutions and established its dependence
on the dimensions of the attack signal, the iterations, and
the convergence rate of the system. Future works include
the design of attack strategies with partial observations and
detector constraints.

APPENDIX

A. Proof of Lemma 4

Based on (4), we have

V (xa
k, uk, θk) ≤ α2∥xa

k − xa
ss(uk, θk)∥2

= α2∥xa
k − xa

ss(uk−1, θk−1)

+ xa
ss(uk−1, θk−1)− xa

ss(uk, θk)∥2
(s.1)

≤ 2α2(∥xa
k − xa

ss(uk−1, θk−1)∥2

+ ∥xa
ss(uk−1, θk−1)− xa

ss(uk, θk)∥2)
(s.2)

≤ µV (xa
k−1, uk−1, θk−1) + 2α2M

2
x∥θk − θk−1∥2,

where (s.1) follows the fact that ∥a + b∥2 ≤ 2(∥a∥2 +
∥b∥2) and (s.2) follows from (4), (5), (6), and the Lipschitz
continuity of xa

ss(uk, θk). The upper bound of Ev[k]
[∥θk −
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Fig. 3. The optimality gap under different expected output trajectories.
(a) Static trajectory ȳ1 = −1.5 (b) Dynamic trajectory ȳ2 = 10−4k

θk−1∥2] is given as

Ev[k]
[∥θk − θk−1∥2]
= Ev[k]

[∥wk − wk−1 + δvk − δvk−1∥2]
(s.1)

≤ Ev[k]
[2∥wk − wk−1∥2 + 2δ2∥vk − vk−1∥2]

(s.2)

≤ 2η2Ev[k]
[∥ϕ̃k∥2] + 2δ2Ev[k]

[2∥vk∥2 + 2∥vk−1∥2]
(s.3)

≤ 2η2Ev[k]
[∥ϕ̃k∥2] + 8δ2,

where (s.1) follows that E[(a + b)2] ≤ 2E[a2 + b2], (s.2)
follows from (16) and ∥a−b∥2 ≤ 2(∥a∥2+∥b∥2), and (s.3)
follows the fact that ∥vk∥ = 1 since vk is selected uniformly
at random from the unit sphere.

Combining the above results, we can infer that (19) holds.

B. Proof of Theorem 1

Since the objective function Φ(θk) is convex, the Gaus-
sian smooth approximation of Φ(θk) is also convex [24].
With (10b), then we have

Φ(θk)− Φ(θ∗k) ≤ Φδ(θk)− Φδ(θ
∗
k) + 2Mδ. (24)

With (10c), the Taylor expansion of Φδ(θk) at solution θ∗k
is shown as

Φδ(θk) ≤Φδ(θ
∗
k) +∇Φδ(θ

∗
k)

T(θk − θ∗k)

+
M2p2

2δ2
∥θk − θ∗k∥2, (25)

where θ∗k is the optimal solution of the problem P1 at time k.
Taking the expectation of v[k] at both ends of the inequality
(25), then we have

Ev[k]
[Φδ(θk)]− Ev[k]

[Φδ(θ
∗
k)] ≤

Ev[k]
[∇Φδ(θ

∗
k)

T(θk − θ∗k)] +
M2p2

2δ2
Ev[k]

[∥θk − θ∗k∥2].

Since

Ev[k]
[∇Φδ(θ

∗
k)

T(θk − θ∗k)] ≤
1

2
(Ev[k]

[∥∇Φδ(θ
∗
k)∥2] + Ev[k]

[∥θk − θ∗k∥2])

where the inequality follows the fact that for ∀a1, a2,

E[aT1 a2] ≤ (E[∥a1∥2]E[∥a2∥2])
1
2 ≤ 1

2
(E[∥a1∥2] + E[∥a2∥2]),

then it can be inferred that

Ev[k]
[Φδ(θk)] ≤ Ev[k]

[Φδ(θ
∗
k)] +

1

2
Ev[k]

[∥∇Φδ(θ
∗
k)∥2]︸ ︷︷ ︸

1⃝

+ (
1

2
+

M2p2

2δ2
)Ev[k]

[∥θk − θ∗k∥2]︸ ︷︷ ︸
2⃝

.

Next, we analyze the upper bound of the item 1⃝ and 2⃝.

1⃝ =
1

2
Ev[k]

[∥∇Φδ(w
∗
k + δvk)∥2],

=
1

2
Ev[k]

[∥∇Φδ(wk + δvk)− (∇Φδ(wk + δvk)

−∇Φδ(w
∗
k + δvk))∥2],

(s.1)

≤ Ev[k]
[∥∇Φδ(wk + δvk)∥2] + Ev[k]

[∥∇Φδ(wk + δvk)

−∇Φδ(w
∗
k + δvk)∥2],

(s.2)

≤ Ev[k]
[∥∇Φδ(θk)∥2] +

M2p2

δ2
Ev[k]

[∥θk − θ∗k∥2],

=Ev[k]
[∥∇Φδ(wk)− (∇Φδ(wk)−∇Φδ(θk))∥2]

+
M2p2

δ2
Ev[k]

[∥θk − θ∗k∥2],
(s.3)

≤ 2Ev[k]
[∥∇Φδ(wk)∥2] + 2M2p2Ev[k]

[∥vk∥2]

+
M2p2

δ2
Ev[k]

[∥θk − θ∗k∥2],

=2Ev[k]
[∥∇Φδ(wk)∥2] + 2M2p2 +

M2p2

δ2
Ev[k]

[∥θk − θ∗k∥2],

where (s.1) follows the fact that ∥b∥2 = ∥a− (a− b)∥2 ≤
2∥a∥2 + 2∥a − b∥2, (s.2) follows from (10c), i.e., Φδ(θk)
is Mp

δ − smoothness, and (s.3) follows from (10c) and



∥δvk∥2 = δ2∥vk∥2.

2⃝ =(
1

2
+

M2p2

2δ2
)Ev[k]

[∥wk − w∗
k∥2],

(s.1)

≤ (
1

2
+

M2p2

2δ2
)(2Ev[k]

[∥wk−1 − w∗
k∥2] + 2η2Ev[k]

[∥ϕ̃k−1∥2]),
(s.2)

≤ (
1

2
+

M2p2

2δ2
)(2Ev[k]

[∥wk−1 − wk∥2] + 2η2Ev[k]
[∥ϕ̃k−1∥2]),

(s.3)

≤ (
1

2
+

M2p2

2δ2
)4η2Ev[k]

[∥ϕ̃k−1∥2],

=(
2δ2 + 2M2p2

δ2
)η2Ev[k]

[∥ϕ̃k−1∥2],

where (s.1) follows from (15), (s.2) follows that ∥wk−1 −
w∗

k∥2 ≤ ∥wk−1 − wk∥2, and (s.3) follows from (16).
The second moment of the gradient of Φδ(wk) at solution

wk is ∥∇Φδ(wk)∥2 and we have

Ev[k]
[∥∇Φδ(wk)∥2]

= Ev[k]
[∥ϕ̃k − (ϕ̃k −∇Φδ(wk))∥2],

≤ 2Ev[k]
[∥ϕ̃k∥2] + 2Ev[k]

[∥ϕ̃k −∇Φδ(wk)∥2],

where the inequality follows the fact that E[(a − b)2] ≤
2(E[a2] + E[b2]). Since

Ev[k]
[∥ϕ̃k −∇Φδ(wk)∥2] ≤ Ev[k]

[∥ϕ̃k∥2],

which follows from (58) in [17, Theorem 8], with (20),

Ev[k]
[∥∇Φδ(wk)∥2] ≤

24η2p2M2

δ2
Ev[k]

[∥ϕ̃k−1∥2] + 96p2M2

+
6µp2M2

yM
2
g

α2δ2
(Ev[k]

[V (xa
k, uk, θk)]

+ Ev[k]
[V (xa

k−1, uk−1, θk−1)]).

Rearranging the above items, thus we have

Ev[k]
[Φδ(θk)]− Ev[k]

[Φδ(θ
∗
k)]

≤ (2 +
54M2p2

δ2
)η2Ev[k]

[∥ϕ̃k−1∥2] + 194M2p2

+
12µp2M2

yM
2
g

α2δ2
(Ev[k]

[V (xa
k, uk, θk)]

+ Ev[k]
[V (xa

k−1, uk−1, θk−1)]).

Then, it follows that

1

T

T∑
k=1

Ev[T ]
[Φδ(θk)− Φδ(θ

∗
k)]

≤ (
2

T
+

54M2p2

δ2T
)η2

T∑
k=1

Ev[T ]
[∥ϕ̃k−1∥2] + 194M2p2

+
12µp2M2

yM
2
g

α2δ2T

T∑
k=1

(Ev[T ]
[V (xa

k, uk, θk)]

+ Ev[T ]
[V (xa

k−1, uk−1, θk−1)]) (26)

To guarantee |Φδ(w)−Φ(w)| ≤ ϵ, we set δ = ϵ
M . Combined

(19), (24) and (26), we obtain

1

T

T∑
k=1

Ev[T ]
[Φ(θk)− Φ(θ∗k)]

≤ η2p2

δ2T
(
2δ2

p2
+ 54M2 + 48µM2

xM
2
yM

2
g )

T∑
k=1

Ev[T ]
[∥ϕ̃k−1∥2]

+
12µ(µ+ 1)p2M2

yM
2
g

α2δ2T

T∑
k=1

Ev[T ]
[V (xa

k−1, uk−1, θk−1)]

+
192µp2M2

xM
2
yM

2
g

T
+ 194M2p2 + 2Mδ. (27)

Since Ev[k]
[∥ϕ̃k∥2] and Ev[k]

[V (xa
k, uk, θk)] are coupled

variables, we rely on [17, Lemma 11], which shows the
upper bound of the partial sum of non-negative coupled
series, to analyze (27).

Combining (19) and (20), we can obtain a compacted
form, which is shown as[

Ev[k]
[∥ϕ̃k∥2]

Ev[k]
[
√

p12

p21
V (xa

k, uk, θk)]

]
⪯

P

[
Ev[k]

[∥ϕ̃k−1∥2]
Ev[k]

[
√

p12

p21
V (xa

k−1, uk−1, θk−1)]

]
+

[
d1√
p12

p21
d2

]
,

where P =

[
p11

√
p12p21√

p12p21 p22

]
with

p11 =
6p2η2

δ2
(M2 + µM2

xM
2
yM

2
g ),

p12 =
3µp2M2

yM
2
g

2α2δ2
(1 + µ),

p21 =4α2η
2M2

x ,

p22 =µ,

d1 =24p2(M2 + µM2
xM

2
yM

2
g ),

d2 =16α2δ
2M2

x . (28)

Then, we have

max{
T∑

k=1

Ev[T ]
[∥ϕ̃k−1∥2],

T∑
k=1

Ev[T ]
[

√
p12
p21

V (xa
k−1, uk−1, θk−1)]}

≤(ρT +
1

1− ρ
)B1 +

T

1− ρ
(d1 +

√
p12
p21

d2), (29)

=O
(

T

1− ρ
(p2 + µp2 +

pδ

η
)

)
(30)

where B1 = E[∥ϕ̃(w1)∥2]+E[
√

p12

p21
V (xa

1 , u1, θ1)] and ρ <

1 is the maximum singular value of the matrix P .
By solving the characteristic equation |λI −P | = 0 with

eigenvalues λ, then

ρ =
p11 + p22

2
+

√
(
p11 − p22

2
)2 + p12p21

≤p11 + p22
2

+ |p11 − p22
2

|+√
p12p21

=max{p11, p22}+
√
p12p21, (31)



To guarantee ρ < 1, we need to set δ and η such that

p11 +
√
p12p21 < 1, p22 +

√
p12p21 < 1. (32)

Then, combined (27) and (29), it follows that

1

T

T∑
k=1

Ev[T ]
[Φ(θk)− Φ(θ∗k)] ≤ l3+

(l1 +

√
p21
p12

l2)

{
(ρT +

1

1− ρ
)B1 +

T

1− ρ
(d1 +

√
p12
p21

d2)

}
(33)

where

l1 =
2η2

T
+

p2

δ2T
(54M2η2 + 48µM2

xM
2
yM

2
g η

2),

l2 =
12µ(µ+ 1)p2M2

yM
2
g

α2δ2T
,

l3 =
µp2M2

xM
2
yM

2
g

T
+ 194M2p2 + 2Mδ.

Due to δ = ϵ
M , we set η = κϵ

pT such that p4η2

ϵ2 and p2

T have
the same order. Then, the order of (33) is shown as (21).
The parameter κ is set to satisfy (32), i.e.,

ξ1κ
2 + ξ2κ < 1,

ξ3 + ξ2κ < 1,
(34)

where

ξ1 =
6M2(M2 + µM2

xM
2
yM

2
g )

T 2
,

ξ2 =
MMxMyMg

T

√
6µ(1 + µ),

ξ3 = µ.

The feasible range is denoted by (0, κ∗). Based on (34), we
have

κ∗ =min

{
−ξ2 +

√
ξ22 + 4ξ1

2ξ1
,
1− ξ3
ξ2

}
,

=O

(
min

{
T
√
µ(1 + µ)

µ
,

(1− µ)T√
µ(1 + µ)

})
,

ρ =max
{
ξ1κ

2, ξ3
}
+ ξ2κ,

=O
(
max

{
(1− µ)2

1 + µ
, µ

}
+ 1− µ

)
.
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