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FINS LAB is one of We focus on developing distributed, secure and intelligent systems for mobile robots,
machine learning, control and optimization

IWIN Research Group
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* From small questions to essence of things

* Seize every spark of splendid ideas in daily life

DeepMind
Confident What if solving one ) o
Competitive problem could unlock ' AL
Cooperative solutions to Play, play well

thousands more?

Embrace research and make your devotion worthy!
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Graduates & Alumni

-./ - .o

SR ExE v PN g
(el -4 [EEA)- [EEAL- [EEAV-ASU] A HES]
hellobike] TPlink]

=i
[SUTD]

FEiR
[Oxford]

Fei Tong Chengcheng Zhao Xiaoming Duan liayi Chen Heng Li Xin Wang Guanghui Wang Yuanzhi Ni

Southeast University University of Victoria UC Santa Barbara University of Waterloo Central South University Zhejiang University Henan University Jiangnan University
personal website personal website personal website personal website



AN .
Research Interests F IWIN-FINS

Network systems

We focus on developing distributed, secure and intelligent systems for mobile robots,
machine learning, control and optimization

Intelligent Robot Control Systems Secure Data-driven Cooperation Coordinated Charging Systems Multi-Agent Learning Systems
* Advanced robot structure design and control « Independable information based secure control
* Robots cooperative attack and defense « Analysis and modeling for data privacy preservation
* Robot distributed operation software and systems « Data-driven model inference and optimization

Network + Cooperation: Distributed, Secure, Intelligent 7
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Why Network and Cooperation
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What We Focus on? F IWIN-FINS

Networking + Cooperation

Distributed Learning, Control and Optimization
1+1>2 and N+N >> 2N

Multi-robot Systems, Multi-agent Systems, Sensor Networks, Vehicular networks
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What We Focus on? F IWIN-FINS
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Intelligent Robot System Group & IWIN-FINS

We build a self-designed multi-robot platform, where the robots are capable
of running in omni-direction with highly accurate control and reliable
communication performance. Moreover, the robots are very convenient to
embed other advanced on-board equipments to meet different kinds of
practical application requirements.

» Advanced robot structure design and control
« Robots cooperative attack and defense
e Robot distributed operation software and systems

k o.lillm
.‘ Plage.

Xuda Ding, PhD Hao Jiang, MS Pengjie Fang, MS Wanbin Han, MS Chengye Liao, MS Haoxuan Pan, MS

i

Hardware Software Control Navigation Digital twins Intelligent
Framework Algorithm Algorithm Localization software

12
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Multi-robot Systems & IWIN-FINS

A system consisting of multiple robots, where the robots RN
coordinate with each other to achieve well defined goals / e

e The ability of single robot is limited

.......

e Cooperate to perform complicated tasks

e Strong ability of acquiring and processing information

https://www.youtube.com/results?search_query=Navigation%2C+localization+and+s G.-Z. Yang, et al., The grand challenges of science robotics,”
tabilization+of+formations+of+unmanned+aerial+and+ground+vehicles. Science Robotics. 3(14), (2018).

13
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Cooperation and Security in Network Systems >

Multi-agent cooperation has a mainstream in the field of control and
receives considerable attention. Among its numerous applications, privacy
and security concern arise wherever personally identifiable information is
collected, stored, used or exhibited. The data of this process play a vital role
for secure control. And we are dedicated to investigating the privacy-
preserving information exchange mechanism and reliable control design to
secure the system cooperation.

 Independable information based secure control
» Analysis and modeling for data privacy preservation
» Data-driven model inference and optimization

j - J
Yushan Li, PhD  Qing Jiao, PhD Xiangyu Mao, PhD Zitong Wang, PhD Yarong Wang, MS Chendi Qu, PhD

Intelligent Topology Active Concealed Path Reinforce
Attack Inference Learning Collaboration Planning learning

21
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Cooperation of Network Systems <& IWIN-FINS

The network systems are composed of multiple agents

» Ability of local communication and computations

» Achieve global objectives via local interactions

Smart grid Wireless sensor network Social network Robotics Swarms

The system interaction is critical for the whole operation performance
* Whether the system will be stable? How is the convergence performance

The interaction relationships can be modeled as a topology structure

Information interaction 4+ Action decision = Cooperation

22
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Multi-target Search K IWIN-FINS

Consider the multi-peak characteristics of probability density map
(PDM) for targets search design

. . Algorithm Sketch
[llustration of multi-peak PDM &
e b Allocate Task Plan Path based on HCA
‘ S Obtai response task T
Search Area -am threshold allocation
& Prior function matrix
4 “itarget position HELSE J [ Pattlern 1 ][ PattlernZ ][ Patt:zrn3 ]
| Targets Hungarian

) ] ! '
| .
g J ulti-peak PDM of Target SIERTIEm T-step maximum
sensor et babilit traversal
T observation raJe_c gry prORadliity search
prediction

[ Update PDM ]‘_ point search

—_—

HCA-based path planning: find most probable regions
+ select the most valuable sub-area

Video material for submitted paper :
* — al;gmax{Jf‘j‘k,l =1,2,---,g}

Multi-robot Targets Search under Multi-peak Distribution:
« evaluate HCA A Dynamic HCA-based Approach

Video Demo

o eak caky,
]il,j,k = 'fhj +az- f}(wf ) +as - |log{B|x;x — szt ”2}| Qing Jiao, Yushan Li and Jianping He

+ evaluate the path

Department of Automation, Shanghai Jiao Tong University,
T and Key Laboratory of System Control and Information Processing,
_ 1 eak Ministry of Education of China, Shanghai, China.
V(xi,k:ni,k:k+7') = E Ay P(Xpio Ty eker) + M2 - X ke — wP ||2}

23
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Infer the System Rule K2 IWIN-FINS

Learning via external observation, and then attack the system

_ vi(l),...,9i(n) -
nodes V[ S | Data Filltering

NN, S 2 |
Yi(1), ..., yk(n)

output measurements
from the observable set

observable _*
subnet S

altack node

Basic problems

 what to observe, how to observe?
e whatto learn, how to learn?
 what to attack, how to attack?

(D Topology Inference: find the communication topology and attack

2 Motion rule learning: find the rule of obstacle avoidance and attack

Acknowledge the primary work of Cong Liu

. C. Liy, J. He, et al, “Dynamic Topology Inference via External Observation for Multi-Robot Formation 24
Control”, 2019 IEEE PACRIM




Topology Inference with Partial Observation
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Topology Inference with Dynamic Inputs P IWIN-FINS
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System Inference with Input design N
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Obstacle-disguising Attack S IWIN-FINS
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Defense Design for Topology Security
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Data-Driven Control and Optimization S AR

Distributed optimization plays a vital role in building intelligent networked control
systems. We investigate the improvements in both the accuracy and the convergence
rates of distributed nonconvex optimization algorithms. To this end, we introduce
approximations to substitute for general objective functions as well as constraints,
and turn to consider an easier approximate version of the original problem.
Furthermore, we pursue dependable distributed optimization in face of various issues
ranging from privacy preservation to resilience against malicious adversaries.

Distributed optimization with gradient-free iterations
Dependable enhancement considering privacy preservation and resilience

Applications to intelligent multi-robot systems

Kai Luo, PostDoc  Zhiyu He, MS  Xiaoyu Luo, PhD Wenzhe Zheng, MS Jialun Li, MS Xuechao Zhang, MS

Coverage Non-convex Fault-tolerant Attack Unpredictable Leari_ng
Detection Optimization Control Compensation Control algorithm

30
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Cooperative Control & IWIN-FINS




Distributed Optimization K IWIN-FINS

e Distributed optimization arises in many applications related to networked systems.

e b, !
- = c 3
Bescon! \ A Beacon 3

\
o / ,'

b N e —’.
Posasblc range of catson cstimation

‘\
-
Actual distance from beson /
Error margin i distance estimatson

(a) Distributed Machine Learning? (b) Distributed Localization in Sensor Networks?

“'- . ° ‘
- -

P &7

(c) Distributed Coordination in Smart Grids® (d) Distributed Control of Multi-robot Systems*

Figure 1 Application scenarios of distributed optimization

15. Boyd et al., Found. Trends Mach. Learn., 2011, 2 Y. Zhang et al., IEEE Trans. Wireless Commun., 2015, 3 C. Zhao et al., IEEE Trans. Smart Grid, 2016, 4 H. Jaleel et al., Proc. IEEE,

32
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Distributed Optimization

» What is Distributed Optimization (DO)?
Agents optimize a global objective function based on

local computations and communication.

» Why not Centralized Optimization (CO)?

@ possible lack of central authority

@ issues of efficiency, robustness & scalability®

» Any Critical Challenges?

@ comparable convergence to CO (widely studied)
Figure 2 An illustration of distributed optimization
@ preserve privacy of sensitive local information

SA. Nedi¢ et al., “Distributed optimization for control,” Annu. Rev. Control Rob. Auton. Syst., 2018

33



Distributed Optimization

Developments of Distributed Optimization

&> IWIN-FINS

A. Nedich W. Shi A. Olshevsky G. Scutari M. Hong
ASU Princeton BU Purdue UMN
-0— o —@

DGD EXTRA Push-DIGing SONATA ZONE
undirected graph undirected graph directed graph directed graph undirected graph

sub-linear rate linear rate linear rate (2019) (2019)
(2009) (2015) (2017) féandar Oth-order
L Y ] L v J
non-convex

1st-order convex
optimization algorithms

optimization algorithms

34



® e //\\ .
Motivation & IWIN-FINS

General Distributed Optimization Generic Methods with Gradient Tracking

min f(x =N Zf,,(a:) zi T = (Z’wzg:cj, z)
T

zeX
st = wigsh + Vfi(aith) — Vfi(al)

possibly noncovex ~~
eval of gradients at every itr

Notable unresolved issues in the existing work

@ growing load of oracle queries with respect to iterations

> results from evaluations of gradients or values of local objectives at every iteration
@ hardness of achieving iterative convergence to global optimal points

> results from the nonconvex nature of general objectives

@ trade-off between privacy and accuracy for differentially private DO algorithms

35



i : o y
Algorithm Overview &S IWIN-FINS

Stage 1: Construction of Local Proxies Stage 2: Info Dissemination
1 .-f;(_tl_-)‘: Adaptive Chebyshev P, (m)coe“ﬁdems p‘-’—»@ I SRt
 input Interpolation ool :
----- (local proxy) o+ |Cimy [
Cio local vector p?
! Algorithmic 2 E Terminate at I g o
| Flow : Kth iteration e N
f SO S SR SR ) ) p= NZI Pi
c . Co | =~ |C
Stage 3: Optimization of the Global Proxy . -
o T ' Optimization by K e Consensus with — — 1 H
routput fe, Tp . S\ ) e— D L. . K
gl _ff - Solving SDPs Pi .( ) Rep.p ¢ \_ Distributed Stopping €o Cm_| local vector p;
(e-globally optimal) H converge to p

proxy for global objective f(x)

Figure 3 The architecture of D-CPOA
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» 3k 5 "
Time: July 7th, Tuesday, 14: 30 - 16: 30 e * o '2 Zoom%ﬁ;!iﬁi%-;fhzzggush/@%““ms
: ; ¥ [8: 7870, 28, 14: 30 - 15: 30
Zoom link: ethz.zoom.us/j/5258434015 Peking University 21 ID: 525 843 4015

Peking University Zoom meeting ID: 525 843 4015

BREIERIR IR S
BREEHIRIIRS

Non-convex Distributed Optimization: Novel Algorithmic Design and
Arbitrarily Precise Solution

REA: ASF (LBRBAFETE) Abstract: This talk will introduce a novel distributed algorithm (named CPCA) by exploiting
REME: Non-convex Distributed Optimization: Novel Chebyshev polynomial approximation, consensus and SDP theories, to solve a class of
Algorithmic Design and Arbitrarily Precise Solution constrained distributed non-convex optimization problem. Different from existing iterative
gradient-based method, this algorithm has the advantages of being i) computationally
efficient in that no evaluation of gradients is required within the iterations, and ii) able to
obtain arbitrarily precise estimates of global optimal solutions. We prove that with O(m)
zeroth-order oracle queries and O(log(m/epsilon)) rounds of communications, CPCA can yield
epsilon globally optimal solutions for the considered problem, where epsilon is any arbitrarily
small given tolerance, and m is the maximum degree of local approximations. Extensive
simulation results validate the effectiveness of the proposed algorithm.

K& A: Jeremy Coulson (FIRTHEAFRIR T SiriEL4)
REMBE: Regularized & Distributionally Robust Data— Speaker: fIEF (L HSBASELE)

enabled Predictive Control Biography: Zhiyu He received his B.S. degree in Automation from Shanghai
Jiao Tong University, Shanghai, China in 2019, and is currently a master
student in the Department of Automation, Shanghai Jiao Tong University,
supervised by Prof. Xinping Guan and Prof. Jianping He. His research
interests lie in distributed optimization, learning and control of network

- systems.
ERA B (FREBIBET $HRELE) -on e - s = o
ENBAL JLRASELELHITRE CIMRTEIE : o M=y
‘ EEAL BXE (FREBIETSRLE) SRR LR 5l

EDRM: AERAF THIREEIEHERE S : $
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Defense Mechanisms for Resilient Cooperation

4
; Resilience : » Prevention
; Algorithms i
B Y i Postpone the onset of attacks
®© i Maximum Attack |
Q. H 1 .
E | Impact | » Resilience
Prevention | Detection&i constrain the maximum impact
Algorithms | Isolation ! of attacks
— Algorithms . .
i | attack » Detection & Isolation
y Recovery infer sensitive info of parameters
L "
Attack Onset Time
— Propagation of the attack signal through the time PHERFRIA — JJFRIEE — T+ NEE

-« = Real-time effect of the defense mechanism

1. Dibaii S M et al., A systems and control perspective of CPS security[J1. Annual Reviews in Control, 2019.
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Secure High-dimension Consensus

® Motivation

» Coupled states in different dimensions

e.g., by complex local dynamics

» The comparison is difficult
e.g., sorting and disregarding
» Enlarge the algebraic connectivity

e.g., multi-hop broadcasting

/AN

200
e N
5 eat : =
1004 F N R TAREETT R
v
Oy o
Q= a0
200 \_ O S

Figure. Symbols: ground robots ‘o’
robots ‘x’ , and humans 'V’

These existing works are not applicable to high-dimension
consensus, whose states are coupled

&> IWIN-FINS

, aerial
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Overview of the SHCA Algorithm design

Defense Process
Receive its two-
hop information

<Stage 3 k>3 ) Calculate its
— incremental norm
Stopplngl! (k)—x] (K )l £ l

Secure high- " _< In tolerable >
dimension consensus .icious Agent(\' OLegal neighbors secure range

Iteration Process

<Sta9e1: k=1 >
(Stage2: =2 )

With the adversary Without the adversary

; I 80 I " [—e—Agent 1 —=— Agent 4 3 T T 1 Agent 4
i —A— Agent 2 Agent 5 8 2 Agent 5
—— Agent 3 —+— Agent 6
3 5 2 —— Agent 3 —4+—Agent 6

L
—o— Agent 1 —a— Agent 4
e Agent 2 Agent 5
1 ' —4—Agent 3 == Agent 6
0 5 " 12. 15 20 0 5 10 15 2 '35 5 wlo 1I5 20
erations i
Iterations Iterations

=0 I " [—e—Agent 1 —=— Agenf 15
—h— Agent 2 Age t 5
—o— Agent 3 —+—Agent 6

Relative Positions
Velocities
Relative Positions

I Velocities
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Resilient Consensus via Detection-CompensatioyY

Overview of the detection and compensation design

Object: Average consensus With malicious nodes
and faulty nodes

W: doubly stochastic; design €(k) for normal nodes

necessary condition 1

necessary condition 2

22 =0 ()l < ap*
Attack detection 1 2(k+1)=Wak) +ek 2 Faulttolerance & Isolation
two-hop information set a fault-tolerant error bound

Compensation

based on detected errors
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Resilient Consensus via Detection-CompensatioyY

Error Bound: o;p

convergent to zero

out of the error bound: isolation

Compensation Scheme
Scheme 1: impact detected by Detection Strategy |

i (ke + 1) = —w;; (= (k) — z;(k))
Scheme 2: impact detected by Detection Strategy ||
n} 2 (k+1) = —i? (k) /IV]

Scheme 3: impact of isolation
0> (k + 1) = (za(k + 1) — 2:(0)) /NGl

Scheme 4: impact of undetected misbehaviors
n (k) = —(k — m)e]

{Deterministic, Stochastic} Detection and Compensation Consensus Algorithm

{D-DCC, S-DCC} when information sets are available {constantly, intermittently}.
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About Research Training

What’s Our Training Goal ?
* Establish solid theoretical and technical/hardware foundation
* Develop independent research ability

* Improve academic writing and presentation quality

What Do You Need To Do ?

* Select solid your interested direction

* Focus on your research and balance class work
* Devote time on both theory and platform

* Collaborate closely with seniors/peers

* Report your progress timely
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What Will You Acquire N7 IWIN-FINS

* Chances to talk with distinguished domestic and abroad researchers
e Publish your 1st-author paper on top conferences and journals

* Attend academic conference abroad with fully funded

* Exchange Opportunities to well-known abroad universities
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How To Join Us? K2 IWIN-FINS

* Email to Prof. He (jphe@sjtu.edu.cn) or Dr. Li (yushan li@sjtu.edu.cn)

with your CV, transcript and research experience (not necessary)
 We will appoint an online meeting with you via e-mail

PRP, Chuntsung Projects, Undergraduate thesis
are welcomed to apply !
" <
El P ]
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‘u

. g

ot

Contact US! "
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Q&A
Thank You!



