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Abstract— This paper investigates the problem of high-
dimension consensus against adversaries for multi-agent sys-
tems. Most of the existing works focus on each-dimension
consensus separately. Differently, we introduce the incremental
norm, i.e., the norm of local state vector’s deviation for two
consecutive iterations, to characterize the property of high-
dimension consensus. Then, inspired by the existing two-hop-
based secure one-dimension consensus, an adversary defense
mechanism (ADM) against adversaries is proposed, where two-
hop neighboring information is used to constrain the effect of
adversaries on the performance of high-dimension consensus
in a tolerable range. Specifically, if and only if the incremental
norm of adversaries’ state is bounded by their neighbors’
maximum and minimum incremental norms, their normal
neighboring agents use the transmitted state for local state
update. We also show that under ADM, when adversaries
do not collaborate/neighbor with each other, high-dimension
consensus can be achieved and the final state is bounded by
initial states of all normal agents. Finally, extensive simulations
are conducted to demonstrate the effectiveness of the proposed
defense mechanism.

I. INTRODUCTION

In the past decades, high-dimension consensus has s-
parked considerable research interest in many areas includ-
ing formation control [1], time synchronization [2], current
sharing [3], [4]. The core of high-dimension consensus is to
seek a distributed algorithm to drive the agents to reach an
agreement state [5], where the state is a vector instead of
a scalar. It is worth noting that adversaries are unavoidable
and widely existing in the consensus progress [6]–[8]. It is
because open and wireless networks are usually vulnerable
to malicious attacks so that the transmitted state can be
manipulated by the attacker to produce counterfeit data
[9]. As a result, high-dimension consensus is unable to be
achieved or the final state of consensus is manipulated by
the attacker arbitrarily. Hence, it is practical and important to
design effective defense mechanisms to ensure the security
of high-dimension consensus.

Numerous efforts have been devoted to secure consensus
problems in an adverse environment, which mainly focus
on the fundamental theories and defense scheme design of
one-dimension systems, such as the condition of reaching
consensus under attacks, and resilient countermeasures de-
sign. We categorize the existing works into three aspects.
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The first one is based on the Mean-Subsequence Reduced
(MSR) technique, where the number of tolerable adversaries
is strictly limited by the network connectivity1. For example,
Leblanc et al. proposed a resilient consensus scheme based
on network robustness against malicious attacks, where each
agent only uses local network information to eliminate
extreme values instead of the whole network connectivity
[10]. Dibaji et al. [11] developed a resilient algorithm where
each agent ignores the states of its neighbors with the largest
(smallest) position values to ensure secure consensus and
the number of ignored largest (smallest) states is equal to
the maximum tolerable number of attacks. The second and
third ones are the multi-hop-based defense algorithm and
the mobility-based scheme, respectively. For example, He et
al. exploited two-hop neighboring information to constrain
the used information bounded by the neighboring maximum
state and minimum state to achieve time synchronization
[2]. To break the rule on the number of tolerable malicious
attacks and the assumption on attack collaborations, Zhao
et al. designed a resilient consensus algorithm with mobile
detectors to identify malicious agents, which is not limited
by the network connectivity [12].

However, the above mechanisms and analysis are not
applicable to high-dimension consensus. This is because in
high-dimension consensus, the comparison between differ-
ent high-dimension states is more complex than the scalar
case. Moreover, states in different dimensions are coupled
via complex local dynamics and local interactions, which
renders the design and analysis hard to tract. Therefore,
the design of a defense mechanism which guarantees high-
dimension consensus against adversaries is challenging and
prominent. Some attention has been paid to the security of
high-dimension consensus against adversaries, which mainly
generalizes the Mean-Subsequence Reduced (MSR) method
to high-dimension cases [11]. Cui proposed a two-dimension
MSR-based algorithm where the MSR method is applied for
each dimension of state separately [13]. Yan et al. developed
a resilient consensus algorithm where each normal agent
sorts its received states for different dimensions, computed
two ”middle points” based on the sorted value and moved
its state toward these middle points such that the agreement
of benign agents is reached in the convex hull of all nodes’
initial state [14].

Note that if we need to sort each dimension of the
received state separately, the computation complexity can
be very large when the dimension of the local state grows.

1Network connectivity is the minimum number of agents that can be cut
from the network to make the rest network disconnected.



Moreover, these existing works still only work when the
number of tolerable attacks is known by each normal agent
and strictly limited by the network connectivity. Different
from applying the MSR technique for each dimension,
we introduce the incremental norm that refers to the state
deviation norm at adjacent iterations to characterize the
consensus property for high-dimension cases. Since the
multi-hop information can be easily obtained by distributed
networks, it is interesting to investigate how to use multi-
hop information to limit the effect of adversaries on the
high-dimension consensus. Then, inspired by the work in
[2], we propose an adversary defense mechanism (ADM) to
constrain the effect of adversaries in a tolerable range, where
each normal agent only uses neighboring agents’ states that
have the incremental norm bounded by the minimum and
maximum incremental norm of their neighbors. The main
contributions are summarized as follows.
• We investigate the secure high-dimension consensus

problem against adversaries, where adversaries do not
collaborate or neighbor with each other and the number
of adversaries is arbitrary.

• We design ADM to constrain the states used by nor-
mal agents from agents compromised by adversaries,
which exploits the neighboring largest and smallest
incremental norm based on state information from two
consecutive iterations to achieve consensus.

• We obtain sufficient conditions to ensure the stability
of the overall system composed by the normal agents
under ADM. Simulation results show the effectiveness
of ADM and the convergence rate is affected by initial
states and self-feedback matrix while not influenced by
the adversary.

The rest of this paper is organized as follows. Section II
introduces the system model and adversary model briefly. In
Section III, the ADM is proposed and theoretical analysis is
given. Simulation results are presented in Section IV. Finally,
we summarize our work in Section V.

Notations. Let C, Z, and Z+ denote the set of complex
numbers, the set of non-negative integers, and the set of
positive integers, respectively. For a vector p ∈ Rn, we let
‖p‖ denote its l2-norm, ‖p‖∞ denote its l∞-norm, and pT

denote its transpose. Denote In and 1n as the n dimensional
diagonal unit matrix and column vector with all elements
1, respectively. For matrix P ∈ Rn×n, we use σmax(P )
to denote its maximum singular value, Ker(P ) to denote
its nuclear space, ρ(P ) to denote its spectral radius, and
rank(P ) to denote its rank. The symbol ⊗ denotes the
Kronecker product, diag(·) denotes the diagonal matrix,
min{·} denotes the minimum value and max{·} denotes
the maximum value.

II. PROBLEM FORMULATION

A. Network Model

Consider a system composed by n ∈ Z+ autonomous
agents with the identical dynamics and each agent has a
unique ID number denoted by i = 1, 2, · · · , n. A strongly

undirected connected graph G = {V, E} is used to model
the communication topology among n agents, where V =
{1, 2, · · · , n} is the set of agents and E ⊆ V × V is the
edge set. The neighbor set of agent i is denoted by Ni =
{j| (i, j) ∈ E ,∀j ∈ V} with its cardinality di = |Ni|, where
(i, j) ∈ E illustrates that agent i can receive information
from agent j. The degree matrix is a diagonal matrix defined
as D = diag{Dij} ∈ Rn×n with Dii = di for all i ∈
V . The weighted adjacency matrix is represented by W =
[wij ] ∈ Rn×n, with wij = 1 if (i, j) ∈ E , and wij = 0
otherwise. We do not consider self-loops here, i.e., wii = 0.
Then, the Laplacian matrix is written as L = D −W . We
let Vs ⊆ V represent the set of normal agents, which are
not compromised by the adversary and behave normally,
and V\Vs = {i ∈ V : i /∈ Vs} denotes the set of agents
compromised by the adversaries.

B. System Dynamic Model

Each agent has a discrete time-invariant linear system
model and the dynamics of the i-th agent for ∀i ∈ V are

xi(k + 1) = Axi(k) +Bui(k), (1)

where A ∈ Rm×m and B ∈ Rm×p are constant system
matrices, xi(k) ∈ Rm and ui(k) ∈ Rp denote the state and
the control input of agent i at iteration k with m, p ∈ Z+.
We consider a widely used distributed controller [15], i.e.,

ui(k) = Kxi(k) + P
∑
j∈Ni

(xj(k)− xi(k)), (2)

where K ∈ Rp×m and P ∈ Rp×m are control gain matrices
corresponding to the local state and the deviation between
the local state and the neighboring one, respectively. Thus,
for ∀i ∈ V , we have

xi(k + 1) = (Ã− diB̃)xi(k) + B̃
∑
j∈Ni

xj(k), (3)

where Ã = A+BK ∈ Rm×m and B̃ = BP ∈ Rm×m. Let
x(k) = [x1(k)T, · · · ,xn(k)T]T ∈ Rmn be the global state
of the system, whose dynamics can be written in a compact
form

x(k + 1) = Mx(k), (4)

where M = (In ⊗ Ã − L ⊗ B̃) ∈ Rmn×mn is the
system matrix. Here, we provide the following assumption
to guarantee the system stability for the tractable analysis.

Assumption 1: The dynamic system (A,B) is control-
lable. There exist the control gain K and P such that the
global system in (4) is asymptotically stable.

C. Adversary Model

We consider that the objective of the adversary is to
compromise agents and manipulate their states arbitrarily
such that high-dimension consensus process is destroyed.
The capability of the adversary is described below.
• The adversary can only read the transmitted informa-

tion and cannot manipulate it, which is easily realized
by information encryption and authentication [16].



• Any two adversaries never neighbor/collaborate with
each other. This is reasonable when the network is
sparse and the number of adversaries is smaller than
the size of the network [2].

Let x+
j (k) denote the state of agent j suffering from the

adversary at iteration k, which is described by

x+
j (k) = xj(k) + θj(k), k > 0, j ∈ V\Vs, (5)

where θj(k) ∈ Rm 6= 0m, ∃k ∈ Z+ denotes the false data
injected by the adversary arbitrarily. Based on the adversary
model, the original controller is unable to defend against the
adversary. We will use agents compromised by the adversary
and adversaries interchangeably.

D. Problem Formulation

Different from one-dimension consensus under the adver-
sary, it is hard to design the defense mechanism to ensure
high-dimension consensus under the adversary. On the one
hand, the local system matrices A and B make consensus
analysis more complicated and also render different dimen-
sions of the local state coupled. On the other hand, how
to compare different high-dimension states from different
neighbors is more challenging than the one-dimension case.
The idea of exploiting multi-hop information is beneficial
for constraining the effect of adversaries. Specifically, we
aim to solve the following problems.
• The first one is how to use multi-hop information to

ensure secure high-dimension consensus against adver-
saries, i.e.,

lim
k→∞

‖xi(k)− c̄‖ = 0,∀i ∈ Vs, (6)

where c̄ is called final state.
• The second one is how to analyze the performance

of the designed defense mechanism, i.e., the stability
of the whole system composed by normal agents, the
effect of the adversary on the convergence rate and the
deviation of the final state from the final state for the
case without any adversary.

III. MAIN RESULTS

In this section, we first provide the necessary condition
for achieving high-dimension consensus under the adversary.
Then, a critical definition, i.e., incremental norm, is intro-
duced to set the tolerable secure range. Later, ADM is pro-
posed to limit the effect of adversaries in a tolerable range to
ensure high-dimension consensus. Finally, the performance
of the proposed mechanism is thoroughly analyzed.

A. Necessary Condition Analysis
Suppose that only agent j is compromised by the adver-

sary and it injects false data θj(k) to the true state. Under
(3) with the considered adversary, we obtain

xi(k + 1) =



(Ã− diB̃)xi(k)

+ B̃
∑
`∈Ni

x`(k) + B̃θj(k), j ∈ Ni ∪ i,

(Ã− diB̃)xi(k) + B̃
∑
`∈Ni

x`(k), j /∈ Ni ∪ i.

(7)

We provide one lemma below to show the necessary condi-
tion for ensuring high-dimension consensus by referring to
one-dimension case [2].

Lemma 1: Under (7), if (6) is achieved, then we have

lim
k→∞

θj(k) = 0m. (8)
Remark 1: Lemma 1 means that the necessary condition

for achieving high-dimension consensus is that the injected
false data vector goes to zero as k → ∞. It should be
pointed out that the necessary condition for the case with
only one adversary in Lemma 1 can be easily extended to
the case with more than one adversary.

B. Important Definition

Before introducing ADM, we define the incremental norm
to describe the performance of high-dimension consensus,
which is used to set the tolerable secure range.

Definition 1: (Incremental Norm) The incremental norm
of agent j is defined as the norm of local states’ deviation
at two consecutive iterations, i.e.,

δj(k) = ‖xj(k)− xj(k − 1)‖,∀j ∈ V, k ≥ 1. (9)
Let δjm(k) = min{δl(k)|∀l ∈ Nj ∪ j} be the minimum

incremental norm among the neighbors of agent j ∈ V
and itself at iteration k, where j and jm(k) are ID num-
ber. Similarly, let δjM (k) = max{δl(k)|∀l ∈ Nj ∪ j}
be the maximum incremental norm. Then, we denote the
maximum incremental norm information set as IjM (k) =
{jM (k),xjM (k),xjM (k − 1)} at iteration k ≥ 1, which
includes ID number and state information from agent jM (k).
Similarly, we denote the minimum incremental norm infor-
mation set as Ijm(k) = {jm(k),xjm(k),xjm(k − 1)} at
iteration k ≥ 1.

C. Defense Mechanism Design

The critical idea of ADM is to utilize the two-hop
information to constrain the effect of adversaries in the
tolerable secure range bounded by the neighbors’ minimum
and maximum incremental norm. Taking the update of
agent i as an example, the information set Iij(k) that its
neighboring agent j sends to its own agent i is defined as
Iij(0) = {Ij(0)}, k = 1

Iij(1) = {Ij(1), jm(0),xjm(0), jM (0),xjM (0)}, k = 2

Iij(k − 1) = {Ij(k − 1), Ijm(k − 2), IjM (k − 2)}, k ≥ 3

where Ij(0) = {j,xj(0)}, Ij(k−1) = {j,xj(k−1),xj(k−
2)} is the state from itself at iteration k ≥ 2.

We divide the iteration process into two stages based on
whether the two-hop neighboring information is available,
shown in Algorithm 1.

In stage 1, agent i only receives its neighbors’ informa-
tion set Iij(0), stores the information set Ij(0) and updates
its local state based on update rule (3) at iteration k = 1.

In stage 2, there are two cases, i.e., k = 2 and k > 3.
For case 1, i.e., iteration k = 2, agent i receives its
neighboring agent j’s information set Iij(1) and stores the
information set Ij(1). If jm(1) = j ( jM (1) = j), agent i



checks whether xjm(0) (xjM (0)) is legal by comparing it
with that in the stored information Ij(0). If it is not legal, the
information will not be used. Otherwise, agent i will check
whether xj(1) is legal by calculating δj(1), ‖xjm(0)‖ and
‖xjM (0)‖. If δj(1) satisfies the following secure range

δj(1) ∈ [‖xjm(0)‖, ‖xjM (0)‖], (10)

agent i will render xj(1) as legal information that can be
used for update at iteration k = 2. Otherwise, xj(1) will be
discarded.
For case 2, i.e., iteration k ≥ 3, agent i receives its
neighboring agent j’s information set Iij(k− 1) at iteration
k and stores the information set Ij(k−1). If jm(k−1) = j
( jM (k − 1) = j), agent i checks whether xjm(k − 2)
(xjM (k−2)) is legal by comparing it with that in the stored
information Ij(k−1). If it is not legal, the information will
not be used. Otherwise, agent i will check whether xj(k−1)
is legal by computing δj(k−1), δjm(k−2) and δjM (k−2).
If δj(k − 1) satisfies the following tolerable secure range

δj(k − 1) ∈ [δjm(k − 2), δjM (k − 2)], (11)

agent i will view xj(k−1) as legal information that can be
used for update at iteration k. The set of neighbors with legal
information is denoted by N l

i (k − 1) and then the update
rule can be written as

xi(k) = (Ã−diB̃)xi(k−1)+B̃
∑

j∈N l
i (k−1)

xj(k−1), (12)

where xj(k− 1) = x+
j (k− 1) if j ∈ V\Vs. Once δj(k− 1)

violates (11), we will not use xj(k − 1).
Remark 2: Note that the storage space required by the

mechanism will increase with the dimension of the state,
which can be viewed as the extra cost to enhance the security
of the system. Since only two-hop information is required
to be stored, which is the least number of hops when
we consider using multiple-hop information, our proposed
mechanism is efficient. When the dimension of the system
state is moderate, the proposed mechanism still works.

D. Performance Analysis

Here, we provide the sufficient condition to ensure high-
dimension consensus under ADM by analyzing the variation
of the incremental norm with iterations. For simplicity, the
maximum singular value of Ã − diB̃ for i ∈ V is denoted
by αi, and β is the maximum singular value of B̃.

Theorem 1: Consider system (4) with adversaries (5).
Under ADM, if we have αi < 1, β < 1−αi

di
for ∀i ∈ V , then

the high-dimension consensus is achieved, i.e., (6) holds.
Proof: The proof process is divided into two parts. The

first part is to show that each agent can be stable and the
second part is to ensure the final state of each agent is the
same by contradiction. Combining the two parts, the system
will achieve high-dimension consensus exponentially. Due
to the limited space, we omit the proof.

Remark 3: Theorem 1 shows the sufficient condition to
ensure high-dimension consensus under ADM if and only

Algorithm 1: ADM
Input: A, B, K, P , L and prescribed error threshold ε
Output: xi(T ), ∀i ∈ Vs
Initialization: Each agent i ∈ Vs initializes its information
set Iij(0) and xi(0);
Iteration:
for each normal agent i do

Stage 1 (k = 1):
Receive its neighbors’ information set Iij(0), update its
state at iteration k = 1 based on (3), store xi(1) and
Iij(0);
Stage 2 (k ≥ 2):
if k = 2 then

Receive its neighboring information set Iij(1), store
Ij(1), calculate δj(1), ‖xjm(0)‖, and ‖xjM (0)‖;
for each neighboring agent j do

if jm(1) = j ( jM (1) = j), xjm(0) (xjM (0)) is
legal by comparing it with the stored
information Ij(0) , or jm(1) 6= j and
jM (1) 6= j. then

if (10) is satisfied then
xj(1) is legal, store j(1) and xj(1);

else
xj(1) is illegal, discard xj(1);

Update its state at iteration k = 2 based on (12), and
update Iji (1);

else if k ≥ 3 then
Receive its neighboring information set Iij(k − 1),
store Ij(k− 1), calculate δj(k− 1), δjm(k− 2) and
δjM (k − 2);
for each neighboring agent j, k′ = k − 1 do

if jm(k′) = j ( jM (k′) = j), xjm(k′)
(xjM (k′)) is legal by comparing it with the
stored information Ij(k′) , or jm(k′) 6= j and
jM (k′) 6= j. then

if (11) is satisfied then
xj(k

′) is legal, store j(k′) and xj(k
′);

else
xj(k

′) is illegal, discard xj(k
′);

Update its state based on (12), store xi(k), and
update Iij(k − 1);

If ‖xi(k)− xj(k)‖ < ε, ∀i, j ∈ Vs, j ∈ Ni, then let T = k
and the iteration terminates.

if adversaries never neighbor/collaborate with each other.
And the result of Theorem 1 can be easily extended to the
case that multiple adversaries send random states to their
neighbors since the incremental norm is still bounded under
multiple adversaries.

E. Discussions

In this part, we discuss the final state and the convergence
rate under the adversary and no adversary. In addition, the
relevant affecting factors are analyzed to further research.

1) Final state deviation: Without loss of generality, the
overall system will achieve the pre-set high-dimension con-
sensus without the adversary according to gain matrices
K, initial states, and interaction topology G. Under ADM
and the adversary (5), we constrain the incremental norm



of each agent within the tolerable secure range. Satisfying
the necessary condition of achieving consensus does not
mean that the final state of the whole system composed
of all normal agents is not disturbed and invariant to that
without the adversary. Hence, it is critical and meaningful to
analyze what elements will affect the final state and design a
more efficient defense mechanism under the adversary. From
Theorem 1, we know the final state of system (4) under (5) is
bounded by initial states of all normal agents through ADM.
Besides the above elements under no adversary, the system
parameter P is potential to influence the final state due to its
connection to the adversary. However, how these elements
affect the final state, and whether there exist other elements
influencing the final state are worth further consideration in
the future from the perspective of theoretical analysis.

2) Convergence rate: Consider system (4) without any
adversary (5), we obtain

‖x(k)− x∗‖ =‖Mkx(0)− x∗‖ = ‖Mk(x(0)− x∗)‖
≤‖M‖k‖x(0)− x∗‖.

According to the definition of convergence rate r, we have

r = sup lim
k→∞

(
‖x(k)− x∗‖
‖x(0)− x∗‖

)
1
k = σmax(M). (13)

It shows that the convergence rate is determined by the
maximum singular value of system matrix M when they
are no adversaries. Once there exists the adversary, we will
choose whether to use the state from the adversary for
update through ADM. It can be viewed as the case with a
switching network topology and the analysis of convergence
rate is complex due to the complicated system dynamics.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of ADM for
the cases without/with adversaries.

We consider a formation control scenario with six agents
connected. The second order double-integrator dynamics of
each agent are given by [11], where the relative position
and velocity are two-dimension state variables. The system
matrix and input matrix of each agent are set as follows:

A =

[
0.5 T
0 0.5

]
, B =

[
T 2

2
T

]
,

where the sampling period is set as T = 0.1. It can be easily
validated that the considered system is controllable. The set
of initial states and the set of system parameters are shown
in Table I and Table II, respectively. We set initial state 2 and
system parameter 2 as a set of baseline conditions. Then,
we have αi < 1 for ∀i ∈ V and β = 0.0751, which satisfy
the condition in Theorem 1.

We use the consensus error ε(k) to quantify the perfor-
mance, which is the deviation from the final state without
adversaries, i.e.,

ε(k) =
∑
i∈Vs

‖xi(k)− c̄‖. (14)

TABLE I
THE SETTING OF INITIAL STATES

Initial States x(0)

1 [−7,−3,−2,−2, 0, 1, 0,−1, 2, 3, 6, 2]T

2 [5,−3, 2,−2, 10, 1, 70,−1, 4, 3, 6, 2]T

3 [5,−3, 2,−2, 10, 1, 10,−1, 4, 3, 6, 2]T

TABLE II
THE SETTING OF SYSTEM PARAMETERS

System Parameters K and P

1 K = [−0.25,−0.05], P = [1, 1]

2 K = [−0.25,−0.05], P = [0.02, 0.75]

3 K = [1, 1], P = [0.02, 0.75]

A. The Performance of ADM without the adversary

In this part, we investigate how the proposed mechanism
performs when there are no adversaries. Based on the
baseline conditions, Fig. 1 shows that the convergence of
the two-dimension state under ADM is effectively achieved,
and the final states of relative position and velocity approach
to zero shown in Fig. 1(a) and 1(b).

Then, we investigate the effect of different initial states,
and system parameters K and P on the performance of
ADM. The initial states are set as shown in Table I and other
baseline conditions remain. As we can see from Fig. 2(a),
different initial state has a certain effect on the convergence
rate. Then, we consider different system parameters set in
Table II and remain other baseline conditions. Fig. 2(b)
demonstrates that the convergence rate is related to the
system parameter. Moreover, the influence of self-feedback
gain matrix K is greater than that of gain matrix P on the
convergence rate.

B. The Defense Performance of ADM with Adversaries

Here, we investigate how ADM performs under adver-
saries for the same scenario settings. Consider that agent
3 is manipulated by the adversary which injects false data
θ3(k) at iteration k ∈ Z+ generated randomly from the
interval [0, 10] for each dimension of state. Based on a set
of baseline conditions, Fig. 3 demonstrates that the two-
dimension consensus is still achieved by all normal agents
under ADM, which shows the effectiveness of ADM against
adversaries. Note that the state of agent 3 still fluctuates
and the magnitude of the change in state gradually decays,
which accord with the result in Lemma 1 since the state is
compromised by the adversary and its update is constrained
by the rule of ADM.

Likewise, we investigate the effect of different initial
states and system parameters K and P on the defense and
convergence performance of ADM under the adversary. As
we can see in Fig. 4(a), in the presence of the adversary, the
convergence rate is almost the same as that in the absence
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Fig. 1. Performance of ADM without adversaries. (a) Relative Position.
(b) Velocities.
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Fig. 2. The performance of ADM without adversaries. (a) Different initial
states. (b) Different system parameters.

of adversaries on the whole. From Fig. 4(b), we observe that
there exists a certain small fluctuation under the condition
of system parameter 1 or 2 with the adversary than that
without adversaries, which illustrates the efficient defense
performance of ADM when there exist adversaries.

V. CONCLUSIONS

In this paper, we investigated the problem of high-
dimension consensus against adversaries for multi-agent
systems. Instead of focusing on each-dimension consensus
separately, we introduced the incremental norm that refers to
the norm of state deviation at any two consecutive iterations,
to characterize the convergence of high-dimension con-
sensus. Then considering non-cooperative/non-neighboring
adversaries with an incubation period, ADM is designed
by using two-hop information to limit the used information
from neighboring agents within a tolerable range such that it
prevents the false information from disrupting the consensus
process. When there are no adversaries, the performance of
ADM is the same as that under the traditional consensus
protocol. In addition, we showed that secure consensus can
always be achieved by ADM under adversaries, where the
final state is limited by the initial states of all agents in
the system. For future works, we will further investigate
how the specific adversary model affects the performance of
high-dimension consensus, how to further decrease the extra
storage and computation cost, and the design of the defense
mechanism against collaborated/neighboring adversaries.
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