Intelligent Physical Attacks against Mobile Robotic Networks

Yushan Li, Jianping He, Xuda Ding, Lin Cai and Xinping Guan

Shanghai Jiao Tong University *jphe@sjtu.edu.cn*

May 17, 2021

He et al. (SJTU)

Intelligent Physical Attacks

May 17, 2021 1 / 31

Introduction

- 2 Problem Formulation
- 3 Attack Design and Analysis
- 4 Performance Evaluation

5 Conclusions

Introduction

• What is mobile robotic network (MRN)

A networked system of multiple mobile robots, where the robots interact and cooperate with each other to achieve well defined tasks

• Why adopt MRN

- Higher flexibility and robustness than single robot
- Parallel operation in spatio-temporal tasks
- Coordinated ability of acquiring and processing information

Source: [1] G.-Z.Yang, et al., Science Robotics, 2018.

Applications

• MRN is widely deployed in military and industrial applications

(c) $Manipulation^{[2]}$

(d) Platoon^[3]

(e) Pursuit-evasion^[4]

(f) Combat^[5]

(g) Military surveillance^[6]

(h) UAV swarm^[7]

Local sense + Information interaction + Action decision \Rightarrow Cooperation

Source: [2] J.A. Mora et al., Int. J. Rob. Res., 2017. [3] Y. Li et al., IEEE Trans. Intell. Transp. Syst., 2019. [4] R. Vidal et al., IEEE Trans. Rob. and Autom., 2002. [5] FIRA Cup, 1997. [6] www.joao-valente.com/doku.php?id=wiki:research. [7] Article: www.prophecynewswatch.com/article.cfm?recent_news.id=3782

Vulnerabilities in Interaction

• Interaction is critical for MRNs, however there are situations where

- sensor reading is interfered
- communication is monitored or even hijacked
- certain robot is corrupted as an adversary

(i) disturb sensors $^{[8]}$ (j) communication leak $^{[9]}$ (k) mislead the swarm $^{[10]}$

- Interaction can be maliciously utilized, causing severe threats
- Urgent and vital to tackle the security vulnerabilities of MRNs

Source: [8] ICRA DJI RobotMaster Competition. [9] www.sohu.com/a/241170554_358040 [10] www.sohu.com/a/240072583_465915

• The research about security of MRNs mainly focus on two aspects

Table 1 Related work

	characteristics	representative works		
Cyber aspects	mainly focus on defense design	DoS, replay attacks		
	of common cyber attacks	false data injection		
		(see [11]-[14] for review)		
Physical aspects	against specific transducer	alter gyroscopic sensor ^[15]		
	straightforward to implement	disturb GPS readings $^{[16]}$		
		heat up memory $cell^{[17]}$		

[11] F. Pasqualetti et al., IEEE TAC, 2013. [12] Y. Mo et al., IEEE TAC, 2015. [13] H. Sandberg et al., IEEE Control Syst. Mag., 2015. [14] H.S. Sanchez et al., Annual Reviews in Control, 2019. [15] Y. Son et al., USENIX Security Symposium, 2015. [16] N.O. Tippenhauer et al., ACM CCS, 2011. [17] S. Skorobogatov, IEEE International Workshop on Hardware-Oriented Security and Trust, 2009.

(日) (同) (三) (三)

Motivations

Motivation

• Powerful abilities and knowledge are typically assumed for attacker

- master system structure^[18]
- control data and measurements are corrupted^[19]
- communication link is altered^[20]

Passive design form, analysis simplicity but unrealistic for attacker

- control-communication is protected with strong encryption^[21]
- system structure is unknown beforehand and can dynamically change^[22]
- Physical attacks mainly focus on specific sensor, not generalized
- ► What we investigate
 - generalized and intelligent attacks with weak knowledge of MRNs
 - \triangleright Entrap a robot \triangleright Sneak into the MRN
 - what other knowledge to learn? how to learn?
 - how to design attack strategies? how to optimize the performance?

[18] F. Pasqualetti et al., IEEE TAC, 2012. [19] R. Su et al. Automatica, 2015. [20] Z. Feng et al. Int. J. Robust Nonlinear Control, 2016. [21] M.S. Darup et al., IEEE Control Syst. Lett., 2018. [22] M. Khalili et al., Automatica, 2018.

Main contributions of this work

- We reveal the learnability of the interaction rules in MRN
 - weak prior knowledge, without system dynamics or internal access
 - partial observation and bounded moving abilities
- We design intelligent physical attacks against MRNs
 - obstacle-disguising attack: fool a victim into preset trap
 - sneak attack: replace a target robot in the MRN
- We analyze and optimize the attack performance
 - the feasibility criterion is provided
 - the bound of attack cost is proved

MRN Modeling

▶ Goal: The MRN $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ runs to goal z_g with pre-defined shape

- directed network structure
 - \vartriangleright interaction weight $a_{ij}>0$ indicates j sends information to i
 - $\vartriangleright \text{ in-neighbor } \mathcal{N}_i^{in} = \{j \in \mathcal{V}: a_{ij} > 0\} \quad \text{ out-neighbor } \mathcal{N}_i^{out} = \{j \in \mathcal{V}: a_{ji} > 0\}$
- consensus-based formation control

$$\dot{z}_i = \sum_{j \in \mathcal{N}_i^{in}} a_{ij} (z_j - z_i - h_{ij}), \quad \dot{z}(t) = -Lz(t) + Lh$$

 $\triangleright z_i$: state of robot $i \in \mathcal{V} \quad \triangleright \{h_{ij}\}$: shape configuration $\quad \triangleright L$: Laplacian matrix of \mathcal{G}

• obstacle-avoidance mechanism g

$$\dot{z}_i = g(z_{ob} - z_i, z_{i*} - z_i, v_{ob}, v_i).$$

 $\triangleright z_{i*}$: the desired state of $i \quad \triangleright z_{ob}$ and v_{ob} : the state and velocity of the obstacle

Attacker Modeling

Goal: Observe G and learn the interaction rules, then launch attacks
 Discrete dynamics

$$z^{k+1} = (I - \varepsilon_T L) z^k + \varepsilon_T u^k = W z^k + \varepsilon_T u^k$$

arphi ε_T - the sampling period arphi formation input $u = Lh + [0 \cdots 0 \ c]^{\mathsf{T}}$

Note: W equivalently represents the internal interaction structure as L MRN division $\mathcal{V} = \mathcal{V}_F \cup \mathcal{V}_{F'}$

$$\begin{bmatrix} z_F^{k+1} \\ z_F^{k+1} \end{bmatrix} = \begin{bmatrix} W_{FF} & W_{FF'} \\ W_{F'F} & W_{F'F'} \end{bmatrix} \begin{bmatrix} z_F^k \\ z_F^k \end{bmatrix} + \varepsilon_T \begin{bmatrix} u_F^k \\ u_{F'}^k \end{bmatrix}$$

 $\vartriangleright F$ - observable part $\ \vartriangleright F'$ - unobservable part

• Under partial observation over $\mathcal{V}_F \subseteq \mathcal{V}$

 $\tilde{z}_{\scriptscriptstyle F}^{k+1} = W_{\scriptscriptstyle FF} \tilde{z}_{\scriptscriptstyle F}^k + \varepsilon_{\scriptscriptstyle T} \hat{u}_{\scriptscriptstyle F}^k + \xi_{\scriptscriptstyle F}^k + W_{\scriptscriptstyle FF'} \tilde{z}_{\scriptscriptstyle F'}^k \Rightarrow {\rm influenced \ by \ unobservable \ part}$

Dash $\ddot{\cdot}$ indicates observations $\begin{array}{c} Dash \xi^k \end{array}$ is i.i.d zero-mean Gaussian observation noise

• Bounded moving ability $\|u_a(k)\|_2 \leq \mu$

Key Ideas

- Inspirations: formation control is fundamentally adopted to keep a pre-defined geometric shape in applications of MRN
 - In shape forming and maintaining, internal interaction structure determines the convergence speed and stability
 - In obstacle/collision avoidance, external interaction mechanism steers robots to adapt the environment obstacles

Source: A. Santos, et al., IEEE Transactions on Information Theory, 2019.

• Insight: the state evolution of MRN reveals the interaction rules excite the robot and observe the reaction

Attack Formulation

Overview

Characterize the whole process as four stages \Rightarrow record dataset

- Process description
- shape forming (observe) $\Rightarrow \mathcal{D}_c$
- formation maintenance (observe) $\Rightarrow D_s$
- tentatively trial (excite) $\Rightarrow \mathcal{D}_e$
- entrap/sneak (attack) $\Rightarrow D_a$

Infer knowledge from datasets Design attacks using knowledge

► Steady Pattern Identifiability

• **Theorem:**[state separability] Suppose G has a spanning tree, under $u = Lh + [0 \cdots 0 \ c]^{\mathsf{T}}$, we have

$$\lim_{t \to \infty} \|z(t) - ct \cdot \mathbf{1} - s\|_2 = 0,$$

 $\rhd~c$ - leadership velocity $~~ \rhd~s$ - offset vector and $(s-s^{[i]}{\bf 1})$ is equivalent to Lh Note

- the convergence is guaranteed by the spanning tree structure
- the state can be divided into: common speed and specified shape
- providing the feasibility to infer the steady pattern
- How to obtain the steady pattern parameters?

Steady Pattern Identification

► Calculation procedures

• Define 2nd-order state difference accumulation

$$\Delta S_{i}^{k_{0}:k_{0}+l} = \sum_{k=k_{0}+1}^{k_{0}+l-1} \|\Delta z_{i}^{k+1} - \Delta z_{i}^{k}\|_{2} \iff \text{time window } [k_{0}, k_{0}+l]$$

• Step 1: find the ϵ -convergence time of the steady pattern

$$k^* = \inf \left\{ k_0 \colon \left(\sum_{i \in \mathcal{V}_F} \Delta \tilde{S}_i^{k_0:k_0+l} \right) \le \epsilon \right\}$$

• Step 2: compute the steady velocity

$$\hat{c}(k^*, l) = \operatorname*{arg\,min}_{c} \sum_{k=k^*}^{k^*+l} \left\| \tilde{z}_F^k - (c\varepsilon_T k + b_0) \mathbf{1} \right\|_2^2 \ \triangleright \mathbf{1}$$
 - all-one vector

• Step 3: derive the formation shape configuration

$$\hat{h} = \hat{s} - \hat{s}_j \mathbf{1}, \text{ where } \hat{s} = \sum_{k=k^*+1}^{k^*+l} (\tilde{z}_{\scriptscriptstyle F}^k - \hat{c} \varepsilon_{\scriptscriptstyle T} k \cdot \mathbf{1})/l$$

• steady pattern determined \Rightarrow converging process also determined

Internal Interaction Structure Approximation

► Structure inference under partial observation

• Recalling observations over $\mathcal{V}_F \subseteq \mathcal{V}$

 $\tilde{z}_{\scriptscriptstyle F}^{k+1} = W_{\scriptscriptstyle FF} \tilde{z}_{\scriptscriptstyle F}^k + \varepsilon_{\scriptscriptstyle T} \hat{u}_{\scriptscriptstyle F}^k + \xi_{\scriptscriptstyle F}^k + W_{\scriptscriptstyle FF'} \tilde{z}_{\scriptscriptstyle F'}^k \Rightarrow \text{influenced by unobservable part}$

- Information shortage
 - inevitably incur large error to infer $W_{\rm FF}$ directly
- Transform inference objective
 - narrow down inference set $\mathcal{V}_{H} \subseteq \mathcal{V}_{F}$
 - range determination

$$R_f > R_c, \quad R_h = R_f - R_c.$$

 $\triangleright R_c$ - interaction range of the robots $\triangleright R_f$ - radius of $\mathcal{V}_F \quad \triangleright R_h$ - radius of \mathcal{V}_H

► Approximation modeling

• Theorem:[structure approximation] Using linear state space model, observations in \mathcal{D}_c satisfy

$$y_{H}^{\kappa+1} = W_{HF}y_{F}^{\kappa},$$

$$\triangleright \begin{cases} y_{H}^{k} = \tilde{z}_{H}^{k} - \hat{h}_{H} - \varepsilon_{T}\hat{c}\mathbb{I}_{H} \\ y_{F}^{k} = [(\tilde{z}_{H}^{k} - \hat{h}_{H})^{\mathsf{T}}, (\tilde{z}_{H'}^{k})^{\mathsf{T}}]^{\mathsf{T}} \end{cases} \quad \triangleright \quad \mathbb{I}_{F}^{[i]} = \begin{cases} 1, & \text{if } i \in \mathcal{V}_{F} \text{ is the leadership} \\ 0, & \text{otherwise.} \end{cases}$$

- linear model provides simplicity for the structure representation
- How to approximate W_{HF} ?

Corollary: If $|\mathcal{V}_F| + 1 \leq l \leq k^*$, the least square estimation of W_{HF} is

$$\phi(\mathcal{D}_c): \ \hat{W}_{HF} = \left(\left(Y_F Y_F^{\mathsf{T}}\right)^{-1} Y_F Y_H^{\mathsf{T}}\right)^{\mathsf{T}},$$

$$\triangleright \ Y_H = \left[y_H^2, y_H^3, \cdots, y_H^l\right] \quad \triangleright \ Y_F = \left[y_F^1, y_F^2, \cdots, y_F^{l-1}\right]$$

Note: converging time k^* and data amount before k^* determines the feasibility and accuracy

He et al. (SJTU)

May 17, 2021 16 / 31

External Interaction Mechanism Regression

Key idea: r_i will deviate its ideal trajectory once an obstacle detected

- **Definition:** A node is directly controllable if one can control it to reach any given state z_c^* in finite steps by direct external excitations.
- **Theorem:** If g is known, and $(z_{i*} z_i)$, $(z_a z_i)$ and v_i are measurable, then r_i is directly controllable by r_a .
 - g determines the avoidance behavior \Rightarrow causal relationship
 - given a input configuration, the output is unique
 ⇒ regression feasibility
- How to approximate $g? \leftarrow$ from effects to reveal the causes

External Interaction Mechanism Regression

Regression procedures

- Obtain input configuration
 - Based on $\hat{W}_{\!\scriptscriptstyle HF}$, the desired position of r_i is

$$\hat{z}_{i*}^{k+1} = \sum_{j \in \mathcal{V}_F} \hat{a}_{ij} (\tilde{z}_j^k - \tilde{z}_i^k - h_F^{[j]} + h_F^{[i]}),$$

> $\hat{a}_{ij} = \hat{w}_{ij} / \varepsilon_T \ (i \neq j)$

- z_i and v_i are measurable under fast-rate sampling
- Tentatively excite the target robot and record its reaction

$$Q_{in}^k = [\tilde{z}_v^k - \tilde{z}_a^k, \tilde{z}_{v*}^k - \tilde{z}_v^k, \Delta \tilde{z}_v^k / \varepsilon_{\scriptscriptstyle T}, \Delta \tilde{z}_a^k / \varepsilon_{\scriptscriptstyle T}], \quad Q_{out}^k = \Delta \tilde{z}_v^{k+1}$$

Note: R_c and obstacle detection range \mathcal{A}_d is also inferred by trial^[23] • Construct $\mathcal{D}_e = \left\{ \cup \{Q_{in}^k, Q_{out}^k\} \right\}$ and regress g

$$\hat{g} = \operatorname*{arg\,min}_{g:Q_{in}\mapsto Q_{out}} \sum_{k=1}^{L'} \left\| Q_{out}^k - g(Q_{in}^k) \right\|_2$$

• many mature learning methods are available, e.g., SVR.

[23] Y. Li, et al., IEEE ACC, 2019.

Attack 1: Entrap a Robot

▶ Shortest-path strategy: the path length from the position where r_v is initially attacked to preset trap is shortest \Rightarrow optimize direct attack cost

$$\mathbf{P}_{1}: \min_{H, \boldsymbol{u}_{a, 0:H}} C_{s}(\boldsymbol{u}_{a, 0:H}) = \sum_{k=0}^{H} \|\hat{z}_{v}(k+1) - z_{v}(k)\|_{2}$$

- s.t. $\|u_a(k)\|_2 \leq \mu$, \Leftarrow bounded velocity $\|z_v(H) - z_t\|_2 \leq \delta$, \Leftarrow driven into trap $\eta \leq \|z_a(k) - z_v(k)\|_2$, \Leftarrow not too close $p_a(k) \in \mathcal{A}_d(z_v(k))$. \Leftarrow continuous excitation
 - Theorem: [path length] By the shortest-path strategy, we have

$$(\pi/2 + \xi - \cos\xi)r_{\min} + d_{te}(\cos\xi - 1) \le C_s - C_s^* \le (\frac{7}{6}\pi - 1 - \sqrt{3})r_{\max},$$

 $\triangleright r_{\min}/r_{\max} - \min/\max \text{ reaction radius } \triangleright d_{te} = \|z_t - z_v(0)\|_2 \ \triangleright \xi = \arcsin(\frac{r_{\min}}{d_{te} - r_{\min}})$

- sub-optimal but efficient
- upper bound indicates worst case, hard to meet

He et al. (SJTU)

May 17, 2021 19 / 31

▶ Hands-off strategy: fool r_v into the trap with the maximum hands-off state ratio (sparsity) during the attack \Rightarrow optimize attack stealth

$$\begin{aligned} \mathbf{P}_{2}: & \min_{H, \boldsymbol{u}_{a, 0:H}} C_{h}(\boldsymbol{u}_{a, 0:H}) = \|\boldsymbol{u}_{a, 0:H}\|_{0} \\ \text{s.t.} & \|u_{a}(t)\|_{2} \leq \mu, \\ & \|z_{v}(H) - z_{t}\|_{2} \leq \delta, \\ & \eta_{1} \leq \|z_{a}(t) - z_{v}(t)\|_{2} \leq \eta_{2}, \quad \Leftarrow \text{ relax excitation constraint} \end{aligned}$$

Hard to be solved analytically \Rightarrow using heuristic based methods

• Theorem:[active period] By the hands-off strategy, we have

$$C_h(\boldsymbol{u}_{a,0:H})/H \le 0.5.$$

- largely reduce the activity of r_a during the process
- feasibly counter some threshold-based anomaly detection techniques

Attack 1: Entrap a Robot

► Examples

(m) Case 2 of S-attack

< 口 > < 同 >

He et al. (SJTU)

→ ∃ →

Sneak attack: r_a sneaks into the MRN \mathcal{V} by replacing $r_v \in \mathcal{V}$.

- The state update of $i \in \mathcal{V}$ is influenced by its in-neighbors \mathcal{N}_i^{in} • whose impact is larger ?
- **Definition:** A node is indirectly controllable if one can control another node to chainnedly make it reach any z_c^* in finite steps.
- Lemma: Given desired state z_c^* and initial state z_i^0 , r_i is indirectly controllable by r_j iff

$$\begin{cases} u_e u_c > 0, & \text{ if } (z_c^* - z_i^0) u_c > 0, \\ |p_{\scriptscriptstyle 1 j} u_e| > |p_{\scriptscriptstyle 1 N} u_c|, & \text{ if } (z_c^* - z_i^0) u_c < 0, \end{cases}$$

 $\triangleright p_1 = [p_{11}, \cdots, p_{1N}]^T$ is the left eigenvector for λ_1 of L.

- Sufficient and necessary condition, requiring network structure \boldsymbol{L}
- Unavailable under partial observation

Attack feasibility

• **Theorem :** Given z_c^* and z^0 , r_i is indirectly controllable by r_j when

$$\begin{cases} u_e u_c > 0, & \text{ if } (z_c^* - z_i^0) u_c > 0, \\ |a_{ij} u_e| > |\bar{a}_{ij} u_c|, & \text{ if } (z_c^* - z_i^0) u_c < 0. \end{cases}$$

 $\rhd \ \bar{a}_{ij} = \sum_{j' \in \{\mathcal{N}_i^{in} \setminus j\}} a_{ij'} \ \rhd \ u_e \text{ - excitation input of } r_j \ \rhd \ u_c \text{ - leadership input } input$

Note:

- sufficient condition, without relying on global network structure
- available under partial observation
- provide attack feasibility
- How to design the attack strategy?

Key idea: find the most valuable target robot r_v , steer it out of the interaction range of its neighbors and take over its control over V.

Attack 2: Sneak into MRN

ECR strategy: Evaluate-Cut-Restore

• Evaluate phase: larger out-degree \Rightarrow broader impact on others smaller in-degree \Rightarrow less affected by others

$$\max_{r_i} \qquad (|\mathcal{N}_i^{out}| + ||W_{HF}^{[:,i]}||_1 - |\mathcal{N}_i^{in}| - ||W_{HF}^{[i,:]}||_1)$$

s.t. $i \in \mathcal{V}_H, \ \mathcal{N}_i^{out}| \ge 1, |\mathcal{N}_i^{in}| \le \alpha_1,$

• Cut phase: break the connections between r_v and its in-neighbors

$$\max_{u_a^k} \alpha_2 \| \hat{z}_v^{k+1}(u_a^k) - \hat{z}_{v*}^{k+1} \|_2 + \alpha_3 \sum_{j \in \mathcal{N}_v^{in}} \| \hat{z}_j^{k+1} - \hat{z}_v^{k+1} - \tilde{h}_{jv} \|_2$$

If r_v is not easily to approach, attack $r_j \in \mathcal{N}_v^{in}$ first (indirect controllability) • Restore phase: make r_a recognized by the out-neighbors of r_v , then restore the formation shape

$$\begin{split} u_a^k &= \underset{u_a}{\arg\max} \left\{ \left\| \hat{z}_v^{k+1}(u_a) - \hat{z}_{v*}^{k+1} \right\|_2 : z_a^{k+1} \in \mathcal{Z}_v^f \right\}. \\ \triangleright \ \mathcal{Z}_v^f &= \{ z : \| z(t) - z_{j*}(t) \|_2 < \| z_j(t) - z_{j*}(t) \|_2, \forall j \in \mathcal{N}_i^{out} \} \end{split}$$

Simulation setting

MRN of 17 robots, two kinds of interaction structure

• $u_c = 0.2m/s$, $R_c = 7m$, $R_o = 2m$ and $R_s = 0.5m$

- Dynamic model
 - linear $\dot{z}(t) = -Lz(t) + Lh + u_0$ $\triangleright u_0^N = u_c$ nonlinear $\dot{z}(t) = -Lz(t) + Lh + u_s(t)$ $\triangleright \lim_{t \to \infty} u_s^N(t) = u_c$

• Metric of evaluation: structure (ε_1) and magnitude (ε_2) error

$$\varepsilon_{1} = \frac{\|\text{sign}(\hat{W}_{^{_{HF}}}) - \text{sign}(W_{^{_{HF}}})\|_{0}}{|\mathcal{H}||\mathcal{F}|}, \ \varepsilon_{2} = \frac{\|\hat{W}_{^{_{HF}}} - W_{^{_{HF}}}\|_{F}}{\|W_{^{_{HF}}}\|_{F}}$$

Stage 1: identity the steady pattern

Figure 2 Results evaluation of Stage 1

- $\bullet\,$ the velocity estimation remains stable when ${\cal V}$ reaches steady state
- accuracy of convergence time k^* mainly affects ε_2
- ullet as the sample scale grow, $arepsilon_1$ and $arepsilon_2$ become stable

Stage 2: infer the internal interaction structure

Note feedback means using estimation of R_c as a constraint to infer W_{HF}

Figure 3 The approximation result comparison of \hat{W}_{HF}

- ε_1 is small and generally stable under different noise
- the errors decrease significantly if feedback is adopted
- linear approximation works well in two situations in terms of $arepsilon_1$

▶ Stage 3: infer the external interaction mechanism

Table 2 Statistic results of obstacle-avoidance mechanism regression

	25 samples			50 samples			
Index	MDA	RMSE	MAE	_	MDA	RMSE	MAE
Training	0.880	0.253	0.154		0.913	0.217	0.113
Testing	0.933	0.601	0.404		0.933	0.581	0.300
	100 samples			200 samples			
Index	MDA	RMSE	MAE	_	MDA	RMSE	MAE
Training	0.910	0.333	0.146		0.923	0.426	0.206
Testing	0.956	0.541	0.291		0.967	0.496	0.264

• MDA =
$$\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}(y_i - y'_i)$$
, RMSE = $\sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - y'_i)^2}$, MAE = $\sum_{i=1}^{m} \frac{|y_i - y'_i|}{m}$

• more samples brings more accurate results but not significant improvement

Stage 4: ECR attack strategy

(a) The position errors between the real and the desired positions, and r_a takes the z_5^* as its desired position.

Figure 4 ECR strategy.

- r_v is gradually pulled out of the interaction range of its in-neighbors
 - \bullet break point: connection between \mathcal{N}_v^{in} and r_v break
 - sneak point: r_a is recognized by \mathcal{N}_v^{out}
- the indirect controllability is verified

Conclusions

- reveal the learnability of the interaction rules in MRNs
- design entrap-robot and sneak-into-MRN attack strategies
- prove the conditions to launch the attacks
- obtain performance bounds of the proposed attacks

Open problems

- explore advanced attacks with lower cost and higher rewards
- design efficient detection methods to identify the potential threats
- secure the interaction by leaking confusing states

Thank You! Q&A

He et al. (SJTU)

Intelligent Physical Attacks

э May 17, 2021 31 / 31

э

Image: A match a ma