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Distributed Optimization

𝑥
𝑖

𝑁

𝑖=ଵ

𝑖

𝑁

𝑖=ଵ

𝑖

𝑖

ଵ

ଵ

𝑁

𝑁

Figure 1 An illustration of distributed optimization

I What is distributed optimization?

to enable agents in networked systems to

collaboratively optimize the average of

local objective functions.

I Why not centralized optimization?

possible lack of central authority

efficiency, privacy-preserving,

robustness and scalability issues1

1A. Nedić et al., “Distributed optimization for control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 77–103, 2018
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Distributed Optimization: Application Scenarios
• Distributed optimization empowers networked multi-agent systems

(a) Distributed Learning2 (b) Distributed Localization in Sensor Networks3

(c) Distributed Coordination in Smart Grids4 (d) Distributed Control of Multi-robot Formations5

Figure 2 Application scenarios of distributed optimization
2S. Boyd et al., Found. Trends Mach. Learn., 2011, 3 Y. Zhang et al., IEEE Trans. Wireless Commun., 2015, 4 C. Zhao et al., IEEE Trans. Smart Grid, 2016, 5 W. Ren et al., ROBOT

AUTON SYST., 2008.
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Distributed Optimization: Application Scenarios

• Distributed Learning

Suppose that the training sets are so large that

they are stored separately at multiple servers.

We aim to train the model so that the overall loss

function is minimized.

min
x
F (x) =

∑
i

fi(x),

fi(x) =
∑
j∈Di

lj(x),

where Di denotes local dataset, and fi(·), lj(·)

denote loss functions.

• Distributed Coordination in Smart Grid

We aim to coordinate the power generation of a

set of distributed energy resources, so that

. demand is met, . total cost is minimized.

min
N∑
i=1

fi(Pi),

s.t.
N∑
i=1

Pi = Pd,

s.t. Pi ≤ Pi ≤ Pi,

where fi(·) denotes the function of generation

cost of each energy resource.
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Preliminaries: Gradient Descent

Figure 3 An illustration of gradient descent

Convex Optimization

min
x∈Rn

f(x), f(x) is convex.

Update Rule of GD

xt+1
i = xt+1 − αt∇f(xt)

αt can be fixed or chosen from backtracking line

search method.

Convergence Rates

O(1/t), for convex and smooth f(x)

O(ρt), i.e., linear, for strongly convex and

smooth f(x)
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Preliminaries: Average Consensus

I Question

After taking an exam, every student i knows his/her own score xi ∈ [0, 100].

If students can only know the scores of themselves and their close friends, how can they figure out the

average score x̄ = 1
N

N∑
i=1

xi of the whole class?

I Thoughts

Continuously communicate with close friends =⇒ Local information can be propagated

Properly utilize the available info =⇒ What about taking linear combinations? OK!
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Preliminaries: Average Consensus
I Update Rule

xt+1
i =

∑
j∈Ni

wijx
t
j , (scalar form)

xt+1 = Wxt, (vector form)

where xt = [xt1, . . . , xtN ]T , W = [wij ]Ni,j=1.

I Necessary and Sufficient Condition for Average Consensus

Average consensus is achieved (i.e., limt→∞ xti = x̄) iff

1TW = 1T , W1 = 1, ρ(W − 11T /N) < 1.6

6L. Xiao et al., “Fast linear iterations for distributed averaging,” Syst. Control. Lett., 2004
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Distributed Gradient Descent
Convex Distributed Optimization min

x∈Rn
f(x) = 1

N

N∑
i=1

fi(x), ∀i, fi(x) is convex.

Distributed Gradient Descent (DGD)7

xt+1
i =

∑
wijx

t
j − αt∇fi(xti)

Averaging for reaching consensus Local GD for reaching optimality

Assumptions • diminishing step sizes αt • W doubly stochastic • bounded gradients ‖∇fi‖ ≤ L

Q: Why diminishing αt? A: If not, even if we are at the global optimizer x∗, the algorithm may not stop,

since the local gradient is not necessarily 0.

Sub-linear Convergence

f(x̂ti)− f∗ ∼ O
(

1√
t

)
, x̂ti = 1

t

t−1∑
k=0

xki

can be improved to linear convergence rates with Gradient Tracking8
7A. Nedic et al., IEEE Trans. Autom. Control, 2009, 8P. Di Lorenzo et al., IEEE Trans. Signal Inf. Pr., 2016, J. Xu et al., IEEE Trans. Autom. Control, 2017 9 / 51



Developments of Distributed Optimization

4

DGD
undirected graph

sub-linear rate
(2009)

A. Nedich
ASU

EXTRA
undirected graph

linear rate
(2015)

W. Shi
Princeton

SONATA
directed graph

(2019)

A. Olshevsky
BU

1st-order convex
optimization algorithms

Push-DIGing
directed graph

linear rate
(2017)

ZONE
undirected graph

(2019)

G. Scutari
Purdue

M. Hong
UMN

non-convex 
optimization algorithms

1st-order 0th-order

9A. Nedic et al., IEEE Trans. Autom. Control, 2009, 10W. Shi et al., SIAM J. Optim., 2015, 11A. Nedic et al., SIAM J. Optim., 2017, 12G. Scutari et al., Math. Program., 2019,
13D. Hajinezhad et al., IEEE Trans. Autom. Control, 2019. 10 / 51



Developments of Distributed Optimization
I We classify existing distributed optimization algorithms into two categories:

Primal Methods: Distributed (sub)Gradient Descent14, Fast-DGD15, EXTRA16, DIGing17,

Acc-DNGD18, ZONE19, SONATA20. . .

feature: combine (sub)gradient descent with consensus, so as to drive local estimates to converge

in the primal domain

Dual-based Methods: Dual Averaging21, D-ADMM22, DCS23, MSDA24, MSPD25, . . .

feature: introduce consensus equality constraints, and then solve the dual problem or carry on

primal-dual updates to reach a saddle point of the Lagrangian
I Please refer to [T. Yang et al., Annu Rev Control, 2019] for a recent comprehensive survey.
14A. Nedic et al., IEEE Trans. Autom. Control, 2009, 15D. Jakovetić et al., IEEE Trans. Autom. Control, 2014, 16W. Shi et al., SIAM J. Optim., 2015, 17A. Nedic et al., SIAM J. Optim.,

2017, 18G. Qu et al., IEEE Trans. Autom. Control, 2019, 19D. Hajinezhad et al., IEEE Trans. Autom. Control, 2019, 20G. Scutari et al., Math. Program., 2019, 21J. C. Duchi et al., IEEE Trans.

Autom. Control, 2011, 22W. Shi et al., IEEE Trans. Signal Process., 2014, 23G. Lan et al., Math. Program., 2017, 24K. Scaman et al., in Proc. Int. Conf. Mach. Learn., 2017, 25K. Scaman et

al., in Adv Neural Inf Process Syst, 2018.
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Motivations

General Distributed Optimization

min
x∈X

f(x) = 1
N

N∑
i=1

fi(x)

possibly noncovex

Generic Methods with Gradient Tracking

xt+1
i = Ft

(∑
wijx

t
j , s

t
i

)
st+1
i =

∑
wijs

t
j +∇fi(xt+1

i )−∇fi(xti)︸ ︷︷ ︸
eval of gradients at every itr

Two notable unresolved issues within the existing work

growing load of oracle queries with respect to iterations

. results from evaluations of gradients or values of local objectives within every iteration

hardness of achieving iterative convergence to global optimal points

. results from the nonconvex nature of general objectives
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Contributions

Main contributions of this work

We propose a novel algorithm, leveraging polynomial approximation, consensus and SDP theories.

CPCA has the advantages of

◦ able to obtain ε globally optimal solutions ⇐= ε is any arbitrarily small given tolerance

◦ computationally efficient ⇐= the required 0th-order oracle queries are independent of iterations

◦ distributively terminable once the precision requirement is met

We provide a comprehensive analysis of the accuracy and complexities of CPCA

13 / 51



Problem Formulation

The constrained distributed nonconvex optimization problem we consider is

min
x

f(x) = 1
N

N∑
i=1

fi(x),

s.t. x ∈ X =
N⋂
i=1

Xi, Xi ⊂ R.

Note

We only require possibly non-convex univariate fi(x) to be Lipschitz continuous on convex Xi.

We assume that G is an undirected graph. The extension to time-varying directed graphs is

presented in our recent work.
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Key Ideas
Inspirations

Approximation is closely linked with optimization.

(a) Newton’s method

Source: S. Boyd et al., Convex optimization. 2004

(b) Majorization-Minimization Algorithm

Source: Y. Sun et al., IEEE Trans. Signal Process., 2016

Figure 4 Optimization algorithms based on approximation

Both of them are based on local approximations. What if global approximations?
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Key Ideas

Inspirations

Researchers use Chebyshev polynomial approximation to substitute for the target function defined

on an interval, so as to make the study of its property much easier.

f(x) ≈ p(x) =
m∑
i=0

ciTi

(
2x− (a+ b)

b− a

)
, x ∈ [a, b].

Chebfun Toolbox for MATLAB

Insights
turn to optimize the approximation (i.e. the proxy) of the global objective, to obtain ε-optimal
solutions for any arbitrarily small given error tolerance ε

use average consensus to enable every agent to obtain such a global proxy

optimize locally the global proxy by finding its stationary points, or solving SDPs

16 / 51



Overview of CPCA
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Figure 5 The architecture of CPCA
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Initialization: Construction of Local Chebyshev Proxies

Goal

Construct the Chebyshev polynomial approximation pi(x) for fi(x), such that

|fi(x)− pi(x)| ≤ ε1, ∀x ∈ X,

where X =
⋂N
i=1Xi , [a, b].

Details
1 Run a finite number of max/min consensus iterations in advance to obtain the intersection set X.
2 Use Adaptive Chebyshev Interpolation26 to obtain pi(x).
3 Maintain p0

i storing the Chebyshev coefficients of pi(x)’s derivative through certain recurrence formula.

26J. P. Boyd, Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles. SIAM, 2014, vol. 139.
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Initialization: Construction of Local Chebyshev Proxies

Figure 6 An illustration of Adaptive Chebyshev Interpolation

Source: J. P. Boyd. SIAM, 2014, vol. 139
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Initialization: Construction of Local Chebyshev Proxies

• Examples

. Setup: precision requirement ε1 = 10−6, constraint set X = [−3, 3]

◦ Case I

f1(x) = 1
2 e0.1x + 1

2 e−0.1x

p1(x) =
∑4

j=0 cjTj
(
x
3

)

p0
1 = [1.0226, 0, 0.0303, 0, 1.1301×10−4]T

Adaptive Interpolation

recurrence formula

(In fact, |f1(x)− p1(x)| ≤ 4.8893× 10−8, x ∈ X.)

◦ Case II

f2(x) = 1
4 x4 + 2

3 x3 − 1
2 x2 − 2x

p2(x) =
∑4

j=0 cjTj
(
x
3

)

p0
2 = [5.3437, 7, 17.25, 9, 6.75]T

Adaptive Interpolation

recurrence formula

(In fact, |f2(x)− p2(x)| ≤ 1.7036× 10−14, x ∈ X.)
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Iteration: Consensus-based Update of Local Vectors

Goal

Make local vectors pKi converge to the average p̄ of all the initial values p0
i , i.e.,

max
i∈V

∥∥pKi − p̄∥∥∞ ≤ δ,
where

δ = ε2

1 + b−a
2
(
lnm+ 3

2
)

is proportional to the given precision ε2, with m = maxi∈V mi.

Strategies

Run linear time average consensus27 for certain rounds.

27A. Olshevsky, SIAM J. Optim., 2017.
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Iteration: Consensus-based Update of Local Vectors

Further Assumption: Every agent in the network knows an upper bound U on N .

Iteration Rules 
pki = qk−1

i + 1
2
∑
j∈Ni

qk−1
j − qk−1

i

max(di, dj)
,

qki = pki +
(

1− 2
9U + 1

)
(pki − pk−1

i ).

The number of iterations K is set as

K ← max
(⌈

ln(δ/2
√

2U‖rUi − sUi ‖∞)
ln ρ

⌉
, U

)
,

where ρ =
√

1− 1/(9U) is the decaying rate of the error28, and rki , ski are two variables updated

based on max/min consensus, so that ‖rUi − sUi ‖∞ equals to maxi,j∈V
∥∥p0

i − p0
j

∥∥
∞.

28A. Olshevsky, SIAM J. Optim., 2017.
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Iteration: Consensus-based Update of Local Vectors

Lemma 1
With K ∼ O

(
N log

(
N logm
ε2

))
iterations, we have

max
i∈V

∥∥pKi − p̄∥∥∞ ≤ δ.
• The proximity between pKi and p̄ translates to

|pKi (x)− p̄(x)| ≤ ε2,

where pKi (x), p̄(x) are the Chebyshev polynomials recovered from pKi , p̄, respectively.

23 / 51



Iteration: Consensus-based Update of Local Vectors
The order of K can be brought down to O

(
N log

(
logm
ε2

))
by incorporating distributed

stopping mechanism29 into consensus iterations.

଴ ଴

଴ ଴ ଴

௧ ଴

௧ ଴

ஶ

Yes

Save  
exit

No

Set  ௎ ௎ ௎

Stopping criterion 
is satisfied

Initialization max/min 
consensus
converge

Run average and max/min consensus in parallel

Figure 7 An illustration of average consensus with distributed stopping

29V. Yadav et al., in Proc. 45th Annu. Allerton Conf., 2007. 24 / 51



Iteration: Consensus-based Update of Local Vectors

When CPCA is extended to time-varying digraphs, the iteration rules become

I Set x0
i ← p0

i , y
0
i ← 1, and update xti and yti according to push-sum average consensus

xt+1
i =

N∑
j=1

atijx
t
j , yt+1

i =
N∑
j=1

atijy
t
j ,

where atij is set as 1/dout,ti if j ∈ N in,t
i , and 0 otherwise.

Note: pti , xti/y
t
i converges to p̄ geometrically.

I Update auxiliary variables rti and sti in parallel according to max/min consensus.

rt+1
i (k) = max

j∈N in,t
i

rtj(k), st+1
i (k) = min

j∈N in,t
i

stj(k), k = 0, . . . ,m.

These variables are reinitialized as pti , xti/y
t
i every U iterations.
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Iteration: Consensus-based Update of Local Vectors

• Iteration rules of CPCA when extended to time-varying digraphs

଴ ଴

଴

଴ ଴ ଴

௧ ଴

௧ ଴

ஶ

Yes

Set  
exit

No

Set  ௎ ௎ ௎

Stopping criterion 
is satisfied

Initialization max/min 
consensus
converge

Figure 8 An illustration of push-sum consensus with distributed stopping
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Optimize Polynomial Proxy

Goal

Agent i optimize the polynomial proxy pKi (x) recovered from pKi .

Intuitions

. After the initialization, we have |p̄(x)− f(x)| ≤ ε1, x ∈ X.

After the iteration, we have |pKi (x)− p̄(x)| ≤ ε2, x ∈ X.

. If we set ε1 = ε2 = ε
2 , it follows that |p

K
i (x)− f(x)| ≤ ε, x ∈ X.

. The difference between the optimal values of f(x) and pKi (x) is less than ε.

=⇒ The points in the optimal set X∗e of pKi (x) are ε-optimal solutions of the considered problem.
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Optimize Polynomial Proxy Based on Stationary Points

Procedures
1 Recover the polynomial proxy pKi (x) from pKi .
2 Construct the colleague matrix MC from pKi , and compute its real eigenvalues.

(These are the stationary points of pKi (x).)

MC =



0 1
1
2 0 1

2
1
2 0 1

2

. . .
. . .

. . .
1
2 0 1

2

− c0
2cm

− c1
2cm

− c2
2cm

· · · 1
2 −

cm−2
2cm

−
cm−1
2cm


m×m

3 Compute and compare the critical values of pKi (x), and take the optimal points to form X∗e .
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Optimize Polynomial Proxy Based on Stationary Points
• Why are the eigenvalues of MC exactly the stationary points of pKi (x)?

. Note that for Chebyshev polynomials, we have
1
2

Tk−1(x) +
1
2

Tk+1(x) = xTk(x).

Let v = [T0(x), . . . , Tn−1(x)]T . If x is the root of dpKi (x)/dx = 0, then MCv = xv. Hence, the n roots of

dpKi (x)/dx = 0 correspond to n eigenvalues of MC .

Compare: The roots of p(x) = a0 + a1x+ . . .+ anx
n = 0 are the eigenvalues of

C =


0 1

0 1

. . .
. . .

0 1

− a0
an

− a1
an

· · · −
an−2

an
−

an−1
an

 .

Note: This method is suitable for numerical computations, but involves some errors that can’t be

theoretically characterized.
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Alternative: Optimize Polynomial Proxy by Solving SDPs
Goal

Agent i optimize the polynomial proxy pKi (x) recovered from pKi .

Intuitions

I The optimization of pKi (x) on [a, b] is equivalent to

max
x,t

t s.t. pKi (x)− t is non-negative, x ∈ [a, b].

I For g(x) , pKi (x)− t, its non-negativity on [a, b] holds if and only if it can be expressed as

g(x) =

(x− a)h1(x) + (b− x)h2(x), if m is odd,

h1(x) + (x− a)(b− x)h2(x), if m is even,

where h1(x), h2(x) are sum of squares (SOS), and are of even degree30.

I SOS is linked with positive semi-definiteness. =⇒ The problem can be transformed to a SDP.
30Y. Nesterov, “Squared functional systems and optimization problems,” in High performance optimization, Springer, 2000.
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Alternative: Optimize Polynomial Proxy by Solving SDPs
• Procedures

Suppose pKi = [c0, c1, . . . , cm]T . When m is odd, the SDP reformulation is

max
t,Q,Q′

t

s.t. c0 = t+Q00 +Q′00 + 1
2

m∑
u=1

(
Quu +Q′uu

)
+ 1

4
∑
|u−v|=1

(
Quv −Q′uv

)
cj = 1

2
∑

(u,v)∈A

(
Quv +Q′uv

)
+ 1

4
∑

(u,v)∈B

(
Quv −Q′uv

)
, j = 1, . . . ,m,

Q ∈ Sbm/2c+1
+ , Q′ ∈ Sb(m−1)/2c+1

+ ,

where A = {(u, v)|u+ v = i ∨ |u− v| = i}, B =
{

(u, v)|u+ v = i− 1 ∨ |u− v| = i− 1 ∨ |u+ v − 1| = i ∨
∣∣|u− v| − 1

∣∣ = i
}
.

Note: • SDP can be efficiently solved through the use of CVX, which employs the interior-point method.

Note: • An error tolerance ε3 can be set to help terminate the solving procedure.
31 / 51



Accuracy of CPCA

Theorem 2
With CPCA, every agent obtains ε-optimal solutions for the considered problem, i.e.,

|f∗e − f∗| ≤ ε,

where f∗ is the optimal value.

• Every agent obtains ε-optimal solutions for any arbitrarily small given tolerance ε.

• ε is used to set certain parameters to regulate the stages of initialization and iteration.
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Complexities of CPCA

Table 1 Complexities of CPCA

Stages Elementary Operations 0th-order Oracle Queries Inter-communications

initialization O
(
m2 logm

)
O(m) 0

iteration O
(
N log

(
N logm

ε

))
0 O

(
N log

(
N logm

ε

))
solve O

(
m3) 0 0

whole O
(
N log

(
N logm

ε

))
O(m) O

(
N log

(
N logm

ε

))
N : the size of the network m: the largest order of the polynomial approximations

Note: • The oracle complexities are independent of N .

Note: • m is relevant to the smoothness of objectives, and will not be very large generally (e.g, 10 ∼ 102).
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Complexities of CPCA
Table 2 Comparisons of CPCA and Other State-of-the-arts for Nonconvex Distributed Optimization

Algorithms Networks Oracles Communications

0th-order 1st-order

Alg. 1 31 I O
(
d
ε

)
/ O

(
d
ε

)
SONATA32 II / O

(
1
ε

)
O
(

1
ε

)
CPCA I O(m) / O

(
log
( logm

ε

))
E-CPCA II O(m) / O

(
log m

ε

)
Note: • I and II refers to static undirected and time-varying directed graphs, respectively.

Note: • N denotes the number of agents, and m denotes the maximum degree of local approximations.
31Y. Tang et al., arXiv e-prints, arXiv:1908.11444, 2019, 32 G. Scutari et al., Math. Program., 2019.
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Numerical Experiments

I Optimization Over Static Undirected Graphs

Algorithms to Compare

CPCA

Distributed Projected sub-Gradient Descent (D-PGD)33 (with step size ηt = 5
4 ·

N
t ).

Network Models

The network has N = 36 agents, and G varies from:

9-cycle graph

6× 6 grid graph

Erdos-Renyi random graph with connectivity probability 0.4

33A. Nedic et al., “Constrained consensus and optimization in multi-agent networks,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 922–938, 2010.
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Numerical Experiments
Objective Functions

Case I: the objective functions are

fi(x) = aie
bix + cie

−dix, x ∈ Xi = [−3, 3],

where ai, ci ∼ U(0, 1), bi, di ∼ U(0, 0.2).

Case II: the objective functions are

fi(x) = aix
4 + bix

3 + cix
2 + dix+ ei, x ∈ Xi = [−3, 3],

where ai to ei satisfy normal distributions, with µ being 1/4, 2/3,−1/2,−2 and 0 respectively, and

σ all being 0.1.

Note: Case I: convex objectives Case II: non-convex objectives
36 / 51



Numerical Experiments
• Horizontal axis: Number of Iterations • Vertical axis: Objective Error ε
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Figure 9 Comparison of CPCA and D-PGD

Note: ◦ linear v.s. sub-linear convergence ◦ applicable to the cases with non-convex objectives
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Numerical Experiments

I Optimization Over Time-varying Directed Graphs

Algorithms to Compare

• E-CPCA • SONATA-L34

Network Models

Consider a network of N = 40 agents, each of which has 2 out-neighbors besides itself at time t.

• one is on a fixed cycle • the other is chosen uniformly at random

Objective Functions

The nonconvex but Lipschitz objectives we choose are

fi(x) = ai
1 + e−x

+ bi log(1 + x2), x ∈ Xi = [−5, 5], ai ∼ N (10, 2), bi ∼ N (5, 1).

34G. Scutari et al., “Distributed nonconvex constrained optimization over time-varying digraphs,” Math. Program., vol. 176, no. 1-2, pp. 497–544, 2019.
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Numerical Experiments
• Horizontal axis: Number of Communications • Vertical axis: Objective Error ε
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Figure 10 Comparison of both algorithms regarding inter-agent communications

Note: E-CPCA is more communication-efficient due to its integrated rapidly convergent consensus protocols.
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Numerical Experiments
• Horizontal axis: Number of Oracle Queries • Vertical axis: Objective Error ε
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Figure 11 Comparison of both algorithms regarding oracle queries

Note: Nor the increase of N or worsening of network’s connectivity will change the curve in Fig. 11a.
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Related Work on Privacy-Preserving Distributed Optimization
I Motivation

DO involves local exchange of information (e.g., states or gradients)

=⇒ may lead to disclosure of sensitive objective functions, constraints or state trajectories of agents

I Prevention Strategies

Cryptography35

feature: use techniques like homomorphic encryption to prevent leakage to unauthorized users

cons: costs associated with encryption and decryption are high

Randomization36,37

feature: use differentially private mechanisms to perturb messages, so as to provide confidentiality

cons: trade-off between accuracy and privacy38

35Y. Lu et al., Automatica, 2018, 36S. Han et al., IEEE Trans. Autom. Control, 2017, 37E. Nozari et al., IEEE Trans. Control Netw. Syst., 2018, 38T. Ding et al., IEEE Trans. Autom.

Control, 2021.
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Design of Privacy-Preserving Information Dissemination
I Requirement

in consensus-based info dissemination, preserve the privacy of local objective function fi(x)

=⇒ reduced to the aim of preserving the privacy of local initial vector p0
i

I Building Block

push-sum average consensus39=⇒ achieve averaging in time-varying directed networks

I Key Ideas

1 perturb the initial vector p0
i with noise θi to obtain p̃0

i

2 append p̃0
i block-by-block to current states (first K1 iterations)

⇒ hide useful perturbed initial values within iterations
3 separately subtract the added noise θi (next K2 −K1 iterations)

⇒ ensure exact convergence; mitigate the negative impact of persistent noises on convergence rates
39D. Kempe et al., “Gossip-based computation of aggregate information,” in Proc. 44th Annu. IEEE Symp. Found. Comput. Sci., 2003
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Data-Privacy

• Aim preserve the privacy of local objective function fi(x)

=⇒ transformed to the problem of preserving the privacy of local initial vector p0
i

• Performance Metric

(α, β)-data-privacy40 - measure of estimation accuracy and disclosure probability

Pr
{
‖p̂i − p0

i ‖1 ≤ α
}
≤ β.

β is an upper bound for the probability that a rather accurate estimation of p0
i is obtained.

• Notations

K2 −K1: number of iterations where subtractions of noises are intermittently performed

fθi(k)(y): probability density function of the k-th element of the added noise θi
40J. He et al., “Preserving data-privacy with added noises: Optimal estimation and privacy analysis,” IEEE Trans. Inf. Theory, 2018.
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Data-Privacy
Theorem 3
D-CPOA achieves (α, β)-data-privacy for p0

i , where

α =
mi+1∑
k=1

αk, αk ≥ 0, ∀k = 1, . . . ,mi + 1,

β =
mi+1∏
k=1

[(
1− pK2−K1

)
hi(αk) + pK2−K1

]
, hi(αk) = pmax

ν∈Θ

∫ ν+αk

ν−αk

fθi(k)(y)dy + γ.

αk is the estimation accuracy corresponding to each element of p0
i ∈ Rmi+1.

β is the product of a set of bounds βk for disclosure probabilities corresponding to elements of p0
i .

βk is derived via the law of total probability based on whether the adversaries own the full

knowledge of the in-neighborhood of agent i at each time (this event has a probability ≤ p).
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Comparison with Other Distributed Optimization Algorithms
Table 3 Comparison of D-CPOA and Other Distributed Optimization Algorithms

Algorithms
Nonconvex

Objectives

Networks Privacy

Guarantee

Exact

ConvergenceTime-varying Digraph

Push-DIGing41 X X X

SONATA42 X X X X

Algorithm43 Cloud-based DP* trade-off**

Algorithm44 X X DP trade-off

D-CPOA X X X data-privacy X

* “DP” stands for “differential privacy”. ** There is a trade-off between accuracy and privacy.

41A. Nedic et al., SIAM J. Optim., 2017, 42 G. Scutari et al., Math. Program., 2019, 43 S. Han et al., IEEE Trans. Autom. Control, 2017, 44 E. Nozari et al., IEEE Trans. Control Netw. Syst.,

2018.
45 / 51



Current Efforts
We aim to solve problems with d ∈ N, i.e., local objective functions are multivariate.

I Inspirations

There is a recent method that achieves global optimization of smooth functions based on zeroth-order

information45.

I Settings

nonconvex and m-times continuously differentiable objective f(x), a bound region Ω that optimal solutions

are known to fall into, function values f(xj) at n randomly sampled points xj in Ω(j = 1, . . . , n), and other

technical assumptions

I Results

the absolute difference between the obtained solution and the global optimum is of the order of

O
(
n−m/d+1/2+3/d) =⇒ close to the lower bound O

(
n−m/d

)46
45A. Rudi et al., “Finding global minima via kernel approximations,” arXiv preprint arXiv:2012.11978, 2020, 46 E. Novak, “Deterministic and stochastic error bounds in numerical analysis,” ,

vol. 1349, 2006.
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Current Efforts
I Key Ideas of this Recent Method

1 perform the following transformation

min
x∈Ω

f(x) =⇒ max
c∈R

c s.t. ∀x ∈ Ω, f(x) ≥ c, (1)

The equivalence follows from the fact that (x∗, t∗) is optimal for RHS iff x∗ is optimal for LHS and

t∗ = f(x∗).

2 add the penalization, and approximate the infinite set of inequality constraints in RHS of (1) by a set of

equality constraints in

max
c∈R, B∈Sn

+

c− λTr(B) s.t. ∀j ∈ {1, . . . , n}, f(xj)− c = Φ>j BΦj ,

based on sampled values f(x1), . . . , f(xn). Note: Φj is the column of a matrix obtained based on kernels

3 solve the above semidefinite programming reformulation (e.g., use the interior-point method)
47 / 51



Current Efforts

I Our Plans

We wish to borrow ideas from this recent work and design a distributed nonconvex optimization

algorithm that

finds the approximate globally optimal solutions

has a consensus-based iteration rule free from function evaluations

→ this goal is achievable since function values are needed a priori and are not iteratively evaluated

→ then cumulative costs of queries do not grow with the iterations and are effectively reduced
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Current Efforts
I Ongoing Efforts

design distributed strategies based on the idea of this recent work. There are some issues to be addressed.

If we choose the same sampled points for all agents, then local information is coupled in the equality

constraints
N∑
i=1

fi(xj)− c = Φ>j BΦj , j = 1, . . . , n.

We need to find strategies to cope with such coupled constraints.

To effectively solve SDPs via the interior-point method, we need to calculate the Hessians of

logarithmic barrier functions. Distributed strategies may require the exchange and updates of these

Hessians, which can add to the burden of communication.

investigate in the distributed setting, whether the dependence of the error ε on n,m and d remains the

same compared to that in the centralized setting.
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Future Work
Future work includes

Apply the proposed proxy-based algorithm to deal with practical problems arising in distributed

learning, coverage control, and other applications relating to multi-agent systems.

Leverage the idea of introducing polynomial approximation to deal with problems with multivariate

noncovex objectives.

If You Are Interested

You are warmly welcomed to visit the following websites for the paper and slides.
Paper: https://arxiv.org/pdf/2008.00252.pdf https://arxiv.org/pdf/2101.06127.pdf

Slides: https://iwin-fins.com/wp-content/uploads/2020/04/slides.pdf

Thank you for listening!
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