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Abstract—Subspace identification has received considerable
attention due to its noniterative way of estimating the system
model by linear algebraic steps, which identifies the parameter
matrices of the system model by projecting them into a subspace
related to input and output. However, these steps which do
not have a explicit function make the statistical analysis of
identification results much more complex, especially the analysis
of the variance. Then, the complexity of the variance analysis
in the subspace method leads to the difficulty of obtaining the
optimal input signal to achieve stable identification results with
the minimum variance. To tackle these problems, we propose an
improved subspace method which has an explicit identification
function with respect to the input and output to facilitate the
variance analysis, and then present an input design algorithm to
minimize the variance of the identification results. The proposed
method identifies the Markov parameter matrix of an LTI system
and obtains the identification function by constructing a block
Hankel matrix related to the input and output. We design the
input signal to minimize the variance of the identification results
of the matrices of the system model by splitting the non-convex
variance analysis problem into two sub-problems. Both of the
sub-problems are relaxed and solved with the optimal solution
guaranteed. We prove the convergence of our algorithm. A
simulation demonstrates the effectiveness of our algorithm.

I. INTRODUCTION

System identification refers to determining a mathematical
model to describe system behavior according to the input
and output, which is a branch of modern control theory. The
mainstream methods for identifying a linear time-invariant
(LTI) system fall into two classes: the prediction error method
(PEM) and the subspace method [1].

The PEM aims to minimize a cost function related to the
prediction error [2]. The PEM identifies the state-space model
from all the observed data, which has excellent statistical
properties but often leads to a non-convex, multi-dimensional,
nonlinear optimization problem [3]. Therefore, it is necessary
to simplify the objective function or constraints of the PEM.
Using the low-rank nature of the block Hankel matrix for
decomposition [4], fitting the input signal by a polynomial [5]
or simplifying the original problem by L1 regularization and
LASSO [6] are efficient ways, but the simplified or relaxed
PEM may no longer guarantee the optimal prediction. More-
over, when the sample size is relatively small, the prediction
by the PEM tends to have a large variance [7].

Another mainstream identification method is the subspace
method. The problem considered in the subspace method is to
identify a similarity transformation of the system by projecting
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the system parameter matrices into a subspace related to input
and output [8]. Similar to the PEM, the subspace method
can also lead to a non-convex optimization problem, which
can be solved by using nuclear norm as the relaxation of the
rank of the matrix [9], or combining the Sylvester equation
with the traditional subspace method [10]. The advantage of
the subspace method compared with the PEM is that the
identification result is derived according to linear algebraic
steps without complicated iteration [11] or parameterizing the
system model [11], which means the subspace method is easier
to implement. During the process of subspace identification,
the state of the system is estimated simultaneously [12],
and the observer can continuously update the identification
results. Thus, the subspace method has been widely applied
in the identification of large-scale network systems [13]–[15].
However, the linear algebraic steps in the subspace method
do not provide a cost function like the PEM, making its
statistical analysis much more difficult. Instrumental variable
is a feasible tool to simplify the subspace method and its error
analysis [16], but the use of instrumental variables reduces the
accuracy [17].

In the two mainstream methods, the input signal plays a
vital role, which affects the output and the identification result.
Recently, plenty of research works investigate the input design
based on the PEM [18]–[20] . In [21] and [22], the input design
problem of minimizing the maximum error of identification
is discussed under a finite-impulse response (FIR) model
based on the PEM. In the subspace method, the lack of a
cost function complicates the input design problem. Thus,
the excitation signal in the subspace method is mainly the
Gaussian white noise input signal [9], [16], which may result
in unstable identification results of system matrices with a
large variance due to the noise. Thus, optimal input design for
the subspace method remains a practical issue while significant
improvement has been made in the subspace method [23].

Compared with the PEM, the subspace method has more
reliable noniterative numerical solutions [24], which leads to
its rapid adoption in industry. Considering the advantages and
the wide application of the subspace method, it is highly prac-
tical to design the input signal in the method. The difficulty
lies in the statistical analysis, including identification variance
analysis. In the literature, input design for minimizing the
variance in system identification mainly considers maximizing
the Fisher information matrix of the system [25]. However, this
method is only applicable to the PEM. It is challenging to
ensure the minimization of variance for system identification
only in subspace. If the parameter matrix to be identified is an
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implicit solution to an optimization problem in the subspace
method, the input design problem turns to be more difficult
[17]. Besides, the existing subspace identification methods
require strong assumptions, including system stability or zero
initial states to obtain concise expressions [26], which narrows
the scope of the application of the subspace method.

The concern of this paper is to propose a subspace identifi-
cation method and design the input to minimize the variance
of the identification results. To solve the problems mentioned
in the previous paragraph, we need to propose an improved
subspace method with concise expressions to ease the sta-
tistical analysis of variance. Next, we need to obtain the
expression of identification variance according to the proposed
subspace method and tackle the non-convexity of the variance
minimization problem. Finally, we design the input signal
based on the variance analysis to minimize the variance. The
main contributions in this paper are summarized as follows.
• To the best of our knowledge, we are the first to propose a

subspace method with an input design algorithm to mini-
mize identification variance. We give the upper bound of
identification error under the proposed algorithm, which
makes the identification results more reliable.

• An improved subspace method with an explicit expres-
sion is proposed to tackle the difficulty of variance
analysis of subspace identification. The method avoids
the use of instrumental variables or the requirement of
system stability or zero initial states.

• We solve the variance analysis problem by splitting and
transforming it into two quadratic programming sub-
problems, which is the difficulty of the input design algo-
rithm. Both of the sub-problems are solved by relaxation
with the optimal solution guaranteed. Then, we prove
the convergence of our input design algorithm. Compared
with the common white noise input, the accuracy and the
stability of the proposed algorithm have a considerable
improvement, which is verified by simulation.

The remainder of this paper is organized as follows. Section
II gives the notations and describes the problem of interest.
Section III proposes a subspace identification method. Section
IV analyzes the identification variance of the proposed method
and presents an input design algorithm. Simulation results
are shown in Section V, followed by conclusions and future
directions in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Basic Model and Notations

The model investigated in this paper is the state-space model
of a discrete-time LTI system defined by{

x(k + 1) = Ax(k) +Bu(k) + v(k)
y(k) = Cx(k) + w(k)

(1)

where x(k) ∈ Rm is the state variable, y(k) ∈ Rn is the output
signal, u(k) ∈ Rp is the input signal, v(k) ∈ Rm, w(k) ∈ Rn

are the process noise and output noise, A ∈ Rm×m, B ∈
Rm×p, C ∈ Rn×m are system parameter matrices.

The following notations are used throughout this paper.
The lowercase letters x, y, u represent vectors and the upper-
case letters X,Y, U represent the matrices constructed by the
vectors. Let rank(A) be the rank of matrix A, Tr(A) be the
trace of matrix A, AL be the generalized left inverse matrix
of a full column rank matrix A, respectively.

We define X(k : k+h) as a transpose vector sequence from
x(k) to x(k+ h− 1) and Y c(k : k+ s) as the matrix formed
by the row arrangement from y(k) to y(k + s− 1).

X(k : k + h) =[xT (k), xT (k + 1), · · · , xT (k + h− 1)]T ,

Y c(k : k + s) =[y(k), y(k + 1), · · · , y(k + s− 1)].

A block Hankel matrix formed by vector x(k) is defined as

Hh,s[x(k)]=


x(k) x(k+1) · · · x(k+s−1)

x(k + 1) x(k+2) · · · x(k+s)
...

...
. . .

...
x(k+h−1) x(k+h) · · · x(k+h+s−2)

 ,
where h and s determine the dimension of the block Hankel
matrix. Then, the following matrix composed of the block
Hankel matrix Hh,s[y(k)] and Hh+t,s[u(k)] is denoted by

L[y(k), u(k)] =

[
Hh,s[y(k)]
Hh+t,s[u(k)]

]
.

For an integer h > m, the extended observability matrix Oc

and the extended controllability matrix Ob are

Oc(h) =
[
CT , (CA)T , · · · , (CAh−2)T , (CAh−1)T

]T
,

Ob(h) =
[
Ah−1B, Ah−2B, · · · , AB, B

]
.

A system transformation matrix T is defined as

T (h) =


0
CB 0
CAB CB 0

...
...

...
. . .

CAh−2B CAh−3B ... CB 0

 .
The Markov parameter matrix G is defined as

G(h) =
[
CAh−1B, CAh−2B, · · · , CAB, CB

]
.

Finally, the infinite-norm of a vector (·) is denoted by
‖(·)‖∞, and the Frobenius norm is denoted by ‖(·)‖F .

B. Problem Formulation

As shown in Figure 1, the problem to be considered in this
paper is the subspace identification and input design of the
LTI system (1), which is formulated as follows.
• Subspace identification: A subspace method is proposed

to identify the Markov parameter matrix G, i.e., derive a
function f of Ĝ related to the sequence of input u and
observed output y, with the proof that Ĝ converges to the
true G∗ when the system has noise v and w.

Ĝ = f (u, y) .

• Input design: We obtain the optimal input u to minimize
the variance of the identification, which is proved (in
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Fig. 1. Illustration of the problem of interest.

Section IV) to be equivalent to minimizing the maximum
deviation of identification results as follows.

min
u(k1:k2)

max
vi,wi

‖G1 −G2‖F

s.t. Gi = g (u∗, y∗, vi, wi) i = 1, 2.
(2)

where k1, k2 are the start and end time of input design.
g(u∗, y∗, vi, wi) is defined in section IV, which refers to
the identification result of G when the noise is vi, wi and
the true value of the input and output are u∗ and y∗.

Remark 1. If the bound of the noise v, w is known, all the
possible identification results of G can be obtained, which
distributes related to system input, output and noise. The aim
of input design is to minimize the ”area” of the distribution.

The Markov parameter matrix G plays an essential role
in system identification. The system matrices A, B, C can
be obtained from G using the Ho-Kalman Algorithm, which
forms a Hankel matrix HG by G and solves A, B, C via the
Singular Value Decomposition (SVD) of HG [27]. Moreover,
G is invariant in the system similarity transformation. Since
the subspace method only identifies a similar transformation
of the system [8], the exact A, B and C cannot be estimated
when the state variables are unknown except G. Thus, we
choose the matrix G as the target of identification in this paper.
In addition, since there is no consensus on the criterion for
evaluating the identification results, the criterion in this paper
is defined as the Frobenius norm of the error of G.

The following assumptions are made throughout the paper.

Assumption 1. The system model in (1) is minimal, and the
system order is known.

Assumption 2. The noise v, w are zero-mean white noise
which are independent of system.

Assumption 3. The input, output, and noise are bounded. The
signal-to-noise ratio (SNR) of the system is large enough to
ignore the influence of the quadratic term of the system noise
v2, w2 on the system compared with the variables x, y or u.

Assumptions 1 and 2 are basic guarantees for the feasibility
of identification. Considering that the effect of noise on the
system is generally minor, Assumption 3 is reasonable. These
assumptions does not require the stability or a zero initial state,
which makes them more general.

III. SUBSPACE METHOD FOR STATE-SPACE MODEL
IDENTIFICATION

In this section, we first transform the system (1) and prove
the equivalence of the transformation. Then, a method for
estimating the Markov parameter matrix G is proposed.

A. Equivalent Transformation of the State-space Model

The state-space model of an LTI system (1) includes process
noise v and output noise w . Note that the output noise w does
not affect the dynamic characteristics of the system. However,
the influence of the process noise v may be persistent, and the
Markov parameters are difficult to identify due to the process
noise [28]. An effective method to simplify the identification
and the analysis of the influence of noise is transforming the
process noise v into input noise which is directly related to u.
Thus, we analyze (1) and construct a new model as follows.{

x(k + 1) = Ax(k) +B (u(k)− e(k))
y(k) = Cx(k) + w(k)

(3)

where e(k) ∈ Rp, w(k) ∈ Rm represent the input noise and the
output noise, respectively. ‖e‖∞ = ‖w‖∞ = δ, which means
e and w share the same bound. Considering the relationship
between (1) and (3), we obtain the following theorem.

Theorem 1. Suppose Assumptions 1,2,3 are true, then systems
(1) and (3) are equivalent.

Proof. In order to transform v which affects x into e which
affects u, we examine the relationship between the state
variable x and the input u first.

By Assumption 1, the system (1) is fully controllable when
it is noise-free, i.e., if v = w = 0, ∀x(0) = x0, there exist
a smallest positive integer mx0 and a sequence u(0), u(1),
. . . , u(mx0 − 1), such that

x(mx0
) = 0. (4)

From (4), one infers that the change of x can be transformed
into the change of sequence u in the LTI system. To prove that
this sequence is feasible, we investigate the bound of mx0

.
Denote x(0) as x0, and expand x recursively from x(h) to

x(0) by (1). Then, x(h) is given by

x(h) = Ahx0 +Ob(h)U(0 : h). (5)

When h = m, by Assumption 1,

rank (Ob(m)) = m. (6)

Substitute x(h) = 0 and h = m in (5). It follows that

Ob(m)U(0 : m) = −Amx0. (7)

From (6), the matrix Ob(m) has full row rank. Hence,
[Ob(m),−Amx0] has full row rank, i.e.,

rank([Ob(m),−Amx0]) = rank (Ob(m)) , (8)

which means that the equation in (7) with U(0 : m) as a
variable always has a solution. Then, m is an integer satisfying
(4). Considering that mx0

is the smallest integer, we have

mx0
6 m. (9)
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This implies that mx0
has a supremum m.

Hence, we conclude that the effect of noise on x is equiva-
lent to a change of u for a finite time mx0

with the supremum
m, i.e., ∀k, if x(0) = v(k),

∃uv(k)(0), uv(k)(1), · · · , uv(k)(mx0
− 1),

s.t. x(mx0
) = 0.

Define

e(k) =

k∑
j=k−mx0

+1

uv(j)(k − j). (10)

Then, e in (3) is equivalent to v in (1).
Next, we prove that e(k) is bounded to transform the system

(1) to achieve the same bound of e and w. From (10),

‖e‖∞ 6 mx0

∥∥uv(j)∥∥∞ 6 m
∥∥uv(j)∥∥∞ = m

‖Amv‖∞
‖Ob(m)‖∞

.

By Assumption 3, v is bounded. Note that A,Ob,m are
constants or constant matrices, then e(k) is bounded. Define
δ = ‖w‖∞, ‖Amv‖∞/‖Ob(m)‖∞ = c and

x′(k)

x(k)
=
e′(k)

e(k)
=
u′(k)

u(k)
=
δ

c
, C ′ =

c

δ
C.

Then, e(k)′ and w(k)′ share the same bound δ.

By Theorem 1, we relate the noise directly to the input and
output by constructing an equivalent system model (3), i.e.,
∀v(k) in (1), there exists a sequence e(k) in (3), such that the
two systems can be transformed into each other through linear
transformation.

B. Subspace Identification of the Markov Parameter Matrix

In this subsection, a subspace method is proposed by
constructing a block Hankel matrix related to the input and
output and eliminating x without using instrumental variables.

Theorem 2. Assume that the system (3) is noise-free, then the
Markov parameter matrix G is given by

G(h) = Y c(d : d+ s)L−1[y(k), u(k)]

[
0
Ir

]
, (11)

where d = k + h+ t, s = h · n+ (h+ t) · p and r = h · n · p
are constants that determine the dimension of the matrices.

Proof. First, we derive the relationships between x and y, u.
Expand y(k) recursively until y(k + h− 1) by (3). Then,

Y (k : k + h) = Oc(h)x(k) + T (h)U(k : k + h). (12)

Based on Assumption 1, when h > m, rank (Oc(h)) = m.
Hence, ∃ OL

c (h), s.t.

OL
c (h)Oc(h) = I. (13)

From (12) and (13),

x(k) = OL
c (h)Y (k : k+h)−OL

c (h)T (h)U(k : k+h), (14)

which means x(k) can be linearly represented by Y (k : k+h)
and U(k : k + h).

Expand x(k) recursively until x(k + h− 1) by (3),

x(k + h) = Ahx(k) +Ob(h)U(k : k + h). (15)

From (14) and (15), x(k + h) can be linearly represented by
Y (k : k + h) and U(k : k + h), i.e., ∃ F1, F2, s.t.

x(k + h) = F1Y (k : k + h) + F2U(k : k + h). (16)

Eliminate x by (16) in (3) and it follows that

y(k + h+ t) =

CAt[F1, F2]

[
Y (k : k + h)
U(k : k + h)

]
+G(h)U(k+h : k+h+t).

Denote R = CAt[F1 F2]. Then,

y(d) = [R,G(h)]

[
Y (k : k + h)
U(k : d)

]
. (17)

Considering the time from d to d+ s− 1, we obtain that

Y c(d : d+ s) = [R,G(h)]L[y(k), u(k)]. (18)

Note that the measure of the set of singular matrices in the real
matrix space is zero. Then, for the given y and u, L[y(k), u(k)]
is always invertible. Hence, Theorem 2 is proved by (18).

When the system (3) is not noise-free, and the amount of
data is N · s, we define the identification function f as
• Subspace identification function:

Ĝ(h) = f(u, y)=
1

N

N∑
i=0

Y c(d : d+ s)L−1[y(k), u(k)]

[
0
Ir

]
,

(19)
where k = s · i. The proof that Ĝ converges to the true G∗ is
illustrated in Theorem 4, Section IV.

Theorem 2 and (19) provide a method for identifying matrix
G by an expression only related to y and u, which simplify
the process of error analysis. After obtaining G, the famous
Ho-Kalman Algorithm [27] can be used to solve the system
parameter matrix A,B,C. In the Ho-Kalman Algorithm, a
Hankel matrix HG is formed by G, then matrices A, B, C
are derived via the SVD of HG.

IV. INPUT DESIGN FOR MINIMIZING IDENTIFICATION
VARIANCE

In this section, a method for obtaining the maximum de-
viation between the identification results is proposed, which
is proved to be equivalent to minimizing the identification
variance. Then, we design the system input to minimize the
deviation and prove the convergence of the proposed method.

From the equivalent transformed system (3), substitute v by
e , then, the input design problem (2) is equivalent to

min
u(k1:k2)

max
ei,wi

‖G1 −G2‖F

s.t. Gi = g (u∗, y∗, ei, wi) i = 1, 2.
(20)

From (3), it follows that y∗ = y − w, u∗ = u − e. Then, by
(19), g is defined as

g (u∗, y∗, ei, wi) = f(u− ei, y − wi). (21)
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A. Maximum Identification Deviation

The problem (20) is a min-max problem, and the inner
problem of maximum deviation needs to be solved first. In
this subsection, we obtain the solution to the inner problem. It
is worth noting that the noise is considered as a known variable
when determining the maximum identification deviation.

Similar to Y c(d : d+s), we denote W c
i (d : d+s) as the

matrix formed by the vector from wi(d) to wi(d + s − 1).
Define

[Ri Gi(h)] = [Y c(d : d+s)−W c
i (d : d+s)] ·

L−1[y(k)− wi(k), u(k)− ei(k)].
(22)

From (11) and (22), the g in (20) is defined as

gi (u, y, ei, wi) = [Ri, Gi(h)]

[
0
Ir

]
i = 1, 2. (23)

Then, the maximum identification deviation J(u) is given by

J(u) = max
e1,w1,e2,w2

‖ ([R1 G1(h)]− [R2 G2(h)])

[
0
Ir

]
‖F .
(24)

Denote the elements of the i-th row and j-th column of
the square matrices L−1[y(k), u(k)] as α(i, j), L−1[y(k) −
wt(k), u(k) − et(k)] as βt(i, j) and L[w(k), e(k)] as p(i, j),
respectively. Then,

∂β(i, j)

∂p(l, t)
= (α(t, j)− p(t, j))(α(i, l)− p(i, l)). (25)

Note that in the Taylor expansion of βi with respect to p, the
p(t, j) and p(i, l) in the partial derivative (25) corresponds to
a quadratic term of p, which can be ignored by Assumption
3. Then, βi is a proportional function of p. Denote βi as εp. It
follows that βiw can be ignored when the ε is relatively small
(which is ensured in the input design Algorithm in Section
IV). Hence, the expansion of J is reduced to

J2(u) = max
e1,w1,e2,w2

s∑
j=r+1

(
s∑

i=r+1

(β1(i, j)− β2(i, j)) y(d+i−1)

+

s∑
i=r+1

(w1(d+i−1)− w2(d+i−1))α(i, j)

)2

.

(26)
By Assumption 2 and (10), e(k), w(k) are zero-mean white

noise which are independent of the system. Denote β as (β1−
β2), w as (w1 − w2) and e as (e1 − e2) in this subsection.
Expanding the expression of J in (26), ignoring the quadratic
term by Assumption 3, it holds that solving J is equivalent to
solving two sub-problems J1 and J2,

J1 = max
w

s∑
j=r+1

(
s∑

i=r+1

w(d+ i− 1)α(v, j)

)2

, (27)

J2 = max
e,w

s∑
j=r+1

(
s∑

i=r+1

β(i, j)y(d+ i− 1)

)2

, (28)

where ‖e‖∞ 6 2δ, ‖w‖∞ 6 2δ. From (27), it follows that

J1 = max
W

WT (d : d+s)HW (d : d+s), (29)

where H(i, j) =
∑s

k=r+1 α(k, i)α(k, j).
The maximization problem (29) is a quadratic programming

problem with a positive semi-definite Hessian matrix H , which
makes it an NP-Hard, non-convex problem [29]. Considering
that J1 is a quadratic function with a positive first coefficient
for each variable w, the optimal J1 is obtained only when
all w have reached the boundary value δ or −δ. When s is
relatively small, (29) can be solved by enumeration. However,
for the general case, it is necessary to perform a relaxation.

Denote QW as W (d : d+s)WT (d : d+s) and S as the set
of positive semi-definite matrices with the same dimension as
QW , respectively. Then, (27) is equivalent to

J1 = max
QW∈C

Tr(QWH), (30)

where C :
{
Q : Q 6 4δ2I,Q ∈ S, rank(Q) = 1

}
.

Considering the problem (30), define a relaxed convex
feasible set Crelax :

{
Q : Q 6 4δ2, Q ∈ S

}
and the relaxed

problem
Q∗ = arg max

Q∈Crelax

Tr(QH). (31)

Then, the relaxed problem (31) can be efficiently solved by
semidefinite programming [25].

Theorem 3. Denote q as the eigenvector corresponding to the
largest eigenvalue of the solution Q∗ of (31). Then, q is the
optimal solution of (27).

The proof of Theorem 3 can be directly obtained by
referring to Section 4 in [25], since the transformed sub-
problem (31) is a low dimensional case in [25]. Hence, the
solution of (27) is obtained from Theorem 3.

For the solution of J2, we denote the objective function of
J2 by fj2 , then,

∂fj2
∂p(l, t)

= 2

s∑
j=r+1

s∑
i=r+1

β(i, j)y(d+ i− 1)α(t, j)α(i, l).

(32)
Hence, one infers that the second-order partial derivative of
fj2 can be regarded as a constant, i.e., the Hessian matrix H2

of the multivariate function fj2 with respect to p is a constant
matrix. According to (25) and (32), the Taylor expansion of
fj2 related to p does not have a first-order term. Then, J2 can
be transformed into the following quadratic problem

J2 = max
P

PTH2P, (33)

where P denotes the sequence composed of p(i, j) and H2

is an Hessian matrix which can be solved from (32). Then,
the solution of J2 is provided by Theorem 3. By solving (30)
and (33), we obtain the optimal solution of (26), which is the
maximum identification deviation.

To illustrate that minimizing the identification deviation is
equivalent to minimizing the variance, we first define the
variance of N times of identification Gi i = 1, 2, · · · , N as

µ =

N∑
i=1

‖Gi −
1

N

N∑
j=1

Gj‖2F . (34)
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Similar to (26), µ is also a quadratic form of the noise with
coefficients y and u. Considering that the noise is independent,
and that β is a linear function of the noise from (25), then,
the change of y and u dose not affect the distribution of
identification results. Hence, minimizing the variance µ is
equivalent to minimizing the maximum deviation J .

B. Input Design for Minimizing Identification Variance

This subsection describes the method of input design, which
is shown in Algorithm 1. We take the subspace method
proposed in Section III to identify the system, then combine
the sequential quadratic programming (SQP) with our method
for solving the maximum deviation to design u.

In the initialization phase, time is sampled discretely into
multiple intervals with s time points in each interval. We set
the start time k and the number of groups of data N .

Then, we construct a system model by (3). The maximum
of the quadratic term of the noise which can be ignored is set
as ε. According to the system security requirements, the bound
of the infinite-norm of y(k) and u(k) are determined as ym
and um. We denote the maximum noise as δ by Assumption
2. At last, we initialize a sequence Y (0 : s) and U(0 : s)
without special design to preliminarily identify the system.

Then, we used the subspace method to identify Âi, B̂i and
Ĉi, which are required in (26) for obtaining the maximum
identification deviation. We estimate Ĝ(h) from (19) by the
latest data Y ((i−1)s : is) and U((i−1)s : is), then compute
Âi, B̂i, Ĉi by the Ho-Kalman Algorithm.

Next, we obtain the feasible set U of input ud. The designed
ud is feasible, if and only if both of ud and the predicted value
of y are within the safety threshold when ensuring Assumption
3. We keep the real y safe by leave a certain margin of ym.
In addition, U(0 : s) in the initialization phase also needs to
be in the feasible set. The predicted y is defined as follows.

Ŷ (is : (i+ 1)s) = ÔcÂ
hOc(h)LY ((i− 1)s : is)

+ ÔcÂ
hOc(h)LĜi(h)U((i− 1)s : is)

+ ÔcÔbU((i− 1)s : is)

+ Ĝi(h)U(is : (i+ 1)s).
(35)

To ensure Assumption 3, considering that only the variable
β is related to e or w in (26), from (25), the feasible set U is

U :
{
ud : ‖ŷ‖∞ 6 ym, ‖u‖∞ 6 um, δ‖α2‖∞ 6 ε

}
. (36)

Besides, considering that the influence of u on an LTI system
control may have time delay, the Algorithm 1 borrows the
idea of Model Predictive Control (MPC) to ensure safety when
solving the feasible set and designing u. The U(is : (i+1)s+
m) is designed instead of U(is : (i+1)s) to ensure that the
output value of the system y does not exceed the bound in the
interval of [is, (i+1)s+m]. Only the first s-step U(is : (i+1)s)
is taken in the real system to avoid the influence of time delay.

Finally, we take SQP to solve the optimal ud in the feasible
set U because the expression of the inner problem (20) is
implicit. SQP is a representative non-convex optimization

algorithm. The simulation in Section V shows SQP achieves
satisfying results. The value of maximum deviation at each
point of ud is provided by (26).

Repeating the process of system identification and input
design, the identification result is continuously updated while
designing input to minimize the variance.

C. Convergence Analysis

In this subsection, we analyze the convergence of the
Algorithm 1.

Theorem 4. Considering the estimation Ĝ under Algorithm
1, it follows that

lim
N→∞

∥∥∥Ĝ(h)−G∗(h)
∥∥∥2
F

= 0.

Furthermore, if the noise obeys Gaussian distribution, then
with probability at least 1− 2exp(−t2/2),∥∥∥Ĝ(h)−G∗(h)

∥∥∥2
F
6
c1
N

(c2 + t),

where c1, c2 are constants determined in initialization.

Proof. Since

Gk(h) = Y c(d : d+ s)L−1[y(k), u(k)]

[
0
Ir

]
, ∀k. (37)

Therefore,

G∗(h) =
1

N

N∑
k=1

G∗k(h), Ĝ(h) =
1

N

N∑
k=1

Gk(h). (38)

Denote ∆G =
∥∥∥Ĝ(h)−G∗(h)

∥∥∥2
F

=
∑s

i=1 ∆Gi. Then,

∆Gi =
1

N

N∑
i=1

(wiαi + wiβi + y∗i βi) , (39)

where wi, αi, βi, yi represent the i − th column or i − th
row of the matrix. By Assumptions 2 and 3, wi, αi, βi, yi are
independent of each other and bounded, then lim

N→∞
∆G = 0.

When the noise obeys Gaussian distribution, by Assumption
3 and (25), β obeys Gaussian distribution. According to the
fact that α and y are sequences with definite upper bounds and
the Frobenius norm is Lipschitz continuous, (39) is applicable
to the case of Lemma A.1 in [26]. Hence,

∆G =

s∑
i=1

∆Gi 6
s

N
(εδ + ε2δ2 + ε2δym)(2

√
s+ t), (40)

with probability at least 1− 2exp(−t2/2). Considering that ε,
δ, s, N , ym are all constants, the proof is complete.

Theorem 4 proves that the estimation error of our algorithm
converges at a speed of 1/

√
N and converges to 0 in the

infinite time domain. Actually, the designed input obtains a
better result with a lower amount of data compared with the
white noise input as shown in the next section.
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Algorithm 1 Input Design Algorithm
Initialize: Construct the system model (3). Determine ε, δ, h,
t, N , ym and um. Initialize a sequence of y and u.
Repeat: For i = 1 to i = N

1) Get the latest output data y and input data u.
2) Identify the system by the subspace method.

2-1) Compute Ĝ(h) by (19).
2-2) Obtain Âi, B̂i, Ĉi by the Ho-Kalman Algorithm.

3) Design the input U(is : (i+1)s+m) denoted by ud
3-1) Find the feasible set U of ud in (36) by Âi, B̂i, Ĉi.
3-2) Use SQP to search for ud of (20) in U .

The maximum deviation at each ud is provided by
(26).

4) Take U(is : (i+1)s) as input in the actual system.

V. NUMERICAL SIMULATION

This section uses a numerical simulation to compare the
performance of our input design method with a white noise
input and an PEM-based input design method. The simulation
result verifies the effectiveness of Algorithm 1 in this paper.

We randomly generate an SISO system model of order 4 and
convert it into a controllable canonical form. The conversion
is reasonable because the subspace method only identifies a
similar transformation of the system, and the conversion does
not change the matrix G.

The controllable canonical form of the simulation model is

A =

 0 1 0 0
0 0 1 0
0 0 0 1

−1.233 −2.174 −1.421 −1.208

 ,
B = [0 0 0 1]T , C = [0.819 0.169 − 0.281 0.266].

The constraints of the SISO system are δ = 0.05, ym = 100,
um = 10. Tolerance on the constraint violation in SQP is
set to default as 1e − 6. The output constraint is soft with a
certain safety margin to improve calculation efficiency, which
means the system is allowed to violate the constraint in a short
time. The noise is generated as a white noise sequence. We
take the Frobenius norm of the Markov parameter matrix G
as the index to evaluate the system identification result, which
is consistent with the optimization goal of (20).

In Figure 2, we consider the scenario of identifying a
running system. We use x(0) = [0; 0.5; 0.3; 1] to generate
an initial sequence of length 44 and apply the input design
method in this paper for system identification, compared with
the white noise input and the input which maximizes the
Fisher information matrix based on the PEM [25]. We record
the average of the error when the number of batches of data
increases. It is observed that as the number of data increases,
the identification errors of the three identification methods
decrease. The error of the proposed method and the PEM-
based method are always within the upper bound defined by
Theorem 4 (t = 5), and much smaller than white noise input.
In 80 batches of data, the error of the proposed method and
the PEM-based method are 28.3% and 40.3% of the white

Fig. 2. The average of the error of the identification result (‖Ĝ − G∗‖F ),
obtained from 100 Monte Carlo runs with random noise.

noise input, respectively. Note that the performance of the
PEM-based method is similar to the proposed method in large
time domain. However, the error of the PEM-based method
tends to be large when the amount of data is relatively small.
It implies that the algorithm in this paper has advantages in
fast identification in a short time. This is because that the
proposed method makes full use of the subspace expression
in Section III and the safety range of y, as shown in Figure 4.
In addition, the identification error of the PEM-based method
fluctuates when the data set is not large, and the reliability of
the PEM-based result is not as high as the proposed method.

Figure 3 provides intuitive evidence that our method can
reduce the maximum deviation. We consider the distribution of
the results of multiple identifications of systems with the same
parameter matrix and different noises. We made simulations
with the three types of input in the case of 70 and 250 batches
of data. The identification results of 70 batches taking random
input or the PEM based input have large variance and many
outliers. The proposed input design method needs only 70
batches to achieve better identification result than the 250
batches of data that traditionally uses random input.

The output signal and its prediction during the identification
process are given by Figure 4. It shows that the model in this
paper accurately predicts the value of y, and that the output
signal fluctuates within a safe range. Since the safety constraint
is soft, the output signal violates the constraint in a short
time. Strict restrictions can be achieved by setting a smaller
constraint tolerance. These simulation results demonstrate the
effectiveness of the proposed input design algorithm.

VI. CONCLUSION

In this paper, we propose a subspace method with input
design to enable the observer to identify the system more
accurately by minimizing the variance of identification results
of the system matrices. Our research provides a feasible
way for tackle the difficulty of variance analysis and input
design for subspace identification. We investigate the state-
space model of the LTI system and transform the process
noise into input noise. Then, we propose an improved subspace
identification method to identify the Markov parameter matrix
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Fig. 3. Box-plot of the distribution of the error of the identification result,
which compares the distribution of the subspace input design algorithm
proposed in this paper (SI), the input design method based on the PEM (PEM)
and the random white noise input (RAN) under 70 and 250 sets of data.

Fig. 4. The output signal (the black line) and its prediction (the red line)
during the identification process.

of the system. We derive an explicit identification function and
avoid the use of instrumental variables in the proposed method.
We investigate the variance of the identification results of
the Markov parameter matrix, transform the variance analysis
problem into two sub-problems and solve the sub-problems
by relaxation. Finally, an input design algorithm is presented
to achieve more accurate and stable identification results via
minimizing the identification variance in (34). A simulation
has been provided to illustrate the effectiveness of the pro-
posed algorithm. Future directions include i) finding a fast
convergence method that can replace SQP in designing input
signal while ensuring optimality ii) extending the application
of input design to a locally observable network system.
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