
Differentially Private Discrete-Time Second-Order
Consensus under Directed Topologies

Mengzhou Ma, Chengcheng Zhao, and Jianping He

Abstract— This paper considers the privacy protection of
discrete-time second-order consensus under a directed commu-
nication topology in multi-agent systems. To protect the initial
states of agents, random noise with exponentially decaying
variance is added to the communication states at each iteration.
We provide sufficient and necessary conditions under which
consensus can be maintained, and specify the convergence rate.
We analyze the level of privacy protection based on differential
privacy and derive certain boundaries of privacy degrees when
Laplacian or Gaussian noise is added. The definition of (b, r)-
accuracy shows the lower bound 1 − b of probability that the
absolute position deviation from the original trajectory without
noise is within r. It is used to characterize the system accuracy,
and then the accuracy level is given. Simulations are conducted
to validate the correctness of the obtained results.

I. INTRODUCTION

Over the past decades, consensus problems in multi-agent
systems have attracted great attention for various applications
and theoretical challenges. Early works on consensus with
first-order dynamics can be found in [1], [2]. Also, there
have been increasing interests in the second-order consensus
[3]. Existing researches include the performance analysis
and controller design for different situations such as conver-
gence evaluation, adaptive controller design and consensus
validation under a dynamic topology [4]–[7]. Typically, to
reach consensus, each agent follows a time-invariant update
algorithm and updates the next state with a combination
of information transmitted from neighbour nodes. Complex
interaction and communication between agents will bring the
risk of private information leakage with undesired conse-
quences. Even if agents are trustworthy, a potential malicious
attacker eavesdropping on the messages exchange among
agents can estimate the topology and other important system
information [8], [9].

Therefore, privacy protection has been focused on in
consensus-based network systems [10]–[12]. For example,
Huang et al. introduced the private consensus by presenting
a server-based and a completely distributed randomized
mechanism respectively [13]. [14] proposed an algorithm to
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guarantee the privacy of the initial condition in the first-
order consensus, and meanwhile this algorithm was proved
to achieve minimum privacy breach. [15] presented a novel
approach that enabled secure and privacy-preserving average
consensus in a decentralized architecture in the absence
of any trusted third-party. In addition to the first-order
consensus, a PPMC algorithm which protected the privacy
of maximum consensus was proposed and its convergence
time and privacy degree were given in [16].

Although there have been numerous researches on privacy-
preserving first-order consensus, privacy concerns about the
second-order consensus remain to be a challenging problem.
It is noted that second-order consensus has higher dimensions
of state space. Besides, the input of second-order consensus
is acceleration rather than the velocity, which means the pri-
vacy mechanisms’ influence is coupled in velocity, position
and acceleration. Considering the challenges above, we focus
on the privacy protection of second-order consensus. [17]
explored a Paillier encryption for consensus-based systems
with second-order dynamics. A privacy-preserving second-
order consensus(PPSC) protocol was proposed in [18], and
its asymptotic convergence rate and privacy level based on
(ε, δ)- data-privacy were given. In addition to the privacy no-
tions in the literature, differential privacy with rigorous prop-
erties including resilience to postprocessing and side infor-
mation is well-suited for multi-agent scenarios. And adding
noise is a better option than encryption algorithms consid-
ering the additional computational complexity introduced by
calculating keys. Thus, A privacy-preserving second-order
consensus algorithm based on differential privacy is proposed
in this paper. However, noise adding mechanism in this
approach will influence the certainty of state information
and result in the trajectory deviation. Then evaluating the
necessary and sufficient conditions of convergence, privacy
degree and accuracy to guarantee the effectiveness of this
method is significant and challenging.

In this paper, we aim to study the privacy protection of
second-order consensus under a directed topology. A privacy-
preserving second-order consensus algorithm is proposed.
And its properties such as convergence, privacy, and accu-
racy of the algorithm are explored. Specifically, the main
contributions of this work are summarized as follows.
• We consider the problem of privacy protection in

discrete-time second-order consensus. Random noise is
added to preserve initial states. Sufficient and necessary
conditions to guarantee the convergence are provided,
and the convergence rate is specified.

• Based on differential privacy, the privacy protection
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level of privacy-preserving second-order consensus al-
gorithm is analyzed. Certain boundaries of privacy
degrees are given when Gaussian or Laplacian noise
is added.

• The system accuracy is characterized by exploring the
definition of (b, r)-accuracy. The lower bound of proba-
bility that the position deviation of agents under privacy-
preserving second-order consensus algorithm from the
original position is within a certain range depends on
the variance parameters of noise.

The remainder of this paper is organized as follows.
Section II gives some preliminaries on second-order con-
sensus and the privacy mechanism. Section III shows the
main results. Simulations to validate our results are given in
Section IV. Section V provides the conclusion.

II. PRELIMINARIES

Consider a multi-agent system with n + 1 nodes having
unique ID 1, 2, · · · , n+ 1. A digraph G = (V,A) is used
to model a multi-agent system, where V= {1, 2, · · · ,n+ 1}
is the set of nodes and A ⊆ V × V is the set of edges. We
have (i, j) ⊂ A if and only if(iff) agent i can get information
from agent j. Let A and D be the adjacent matrix and degree
matrix of the graph respectively. The elements of A is defined
as aij .If the node i can obtain information from the node j,
aij = 1, and aij = 0 otherwise. Then, we can denote the
Laplacian matrix by L = D −A.

A. Leader-following Second-order Consensus

The second-order dynamic of each node i, ∀i ∈ V , is

ẋi = vi, v̇i = ui (1)

with position xi ∈ R, speed vi ∈ R, and the acceleration
input ui ∈ R. Given the sampling time τ , by first-order
holder, we get the discrete-time model of (1) as{

xi(k + 1) = xi(k) + τvi(k),

vi(k + 1) = vi(k) + τui(k).

We consider the second-order consensus in leader-following
formation control, which has wide applications [19]. Assume
that there are n followers and 1 leader in the system. Let the
desired relative position that node i should keep to the leader
(node n+ 1) in formation as ∆xi = xi− xn+1. To simplify
the model, we assume the acceleration of the leader is zero.
Referring to [20], the second-order consensus control law for
agent i (i ∈ V , i 6= n+ 1) is

ui(k) = −
n+1∑
j=1

aij [γ1(vi(k) − vj(k)) + γ0(xi(k) − xj(k))

−γ0(∆xi − ∆xj)],

(2)

where γ0 and γ1 are positive control gains. Let ⊗ de-
note Kronecker product, Iy be the y-dimensional identity
matrix. We denote the state vector of agent i be zi(k) =
[ xi(k) vi(k) ]> and z = [ z>1 z>2 · · · z>n+1 ]>,
where ·> denotes the tranpose of a vector or matrix. Then,
the leader-following second-order consensus algorithm is
described by

z(k + 1) = Qz(k) + Φ, (3)

where Q = I2n+2 + τ [(In+1 ⊗ Ã) − γ0L ⊗ B̃K], K =[
1 γ1

γ0

]
, and

Ã =

[
0 1
0 0

]
, B̃ =

[
0
1

]
,

Φ =
[

1 · · · 1
]>
n+1

⊗

[
τγ0 · B̃

n+1∑
j=1

aij(∆xi − ∆xj)

]
.

If adversaries are able to eavesdrop the communicated
information, and get to know the updated rule (3), the initial
states of agents will be disclosed and then trajectory will be
tracked by adversaries. Therefore, we try to keep the initial
states secret from others during the evolution of networks.

B. Differential Privacy and Accuracy

We introduce the notion of differential privacy proposed
by Dwork et al. [21], [22]. In the definition, we have a
symmetric binary relation Adj on a space of datasets, called
adjacency. Intuitively Adj(θ, θ′) iff two datasets θ and θ′

differ by the data of a single participant.
Definition 1: (Adjacency). Let D represent n + 1-

dimensional data space, two datasets θ, θ′ ∈ D are adjacent,
if there exists one i ∈ {1, 2, · · · , n + 1} such that θi 6= θ′i,
but for all j 6= i, θj = θ′j .

Definition 2: (Sensitivity). Let D be a data space equipped
with an adjacency relation Adj. For any query que : D →
Rk, the `µ-sensitivity of que is

∆sen
µ que = max

θ,θ′
||que(θ)− que(θ′)||µ.

Definition 3: (Differential Privacy). The mechanism
M guarantees (ε, δ)-differential privacy if for
any two adjacent sets of initial positions of all
agents θ = {x1(0), x2(0), · · · , xn+1(0)} and
θ′ = {x′1(0), x′2(0), · · · , x′n+1(0)} and for all
S ⊆ Range(M),

Pr{M(que(θ)) ∈ S} ≤ eε Pr{M(que(θ′)) ∈ S}+ δ,

where Range(M) denotes the range of M, and Pr{·}
denotes the probability of some event.

The definition of (b, r)-accuracy given by Huang et al.
[13]. Because in the leader-follower scenario, all nodes’ state
vectors do not converge to an average value, but follow the
leader to follow a certain trajectory. An extended definition
is explored in this work to characterize the system accuracy.

Definition 4: ((b, r)-accuracy). For any initial position
state x(0), b ∈ [0, 1] and r ∈ R≥0, a randomized mechanism
is said to achieve (b, r)-accuracy if every execution starting
from x(0) converges to a trajectory within r from the original
one, with the probability at least 1− b, i.e.,

lim
k→∞

Pr{|x̃i(k)− xi(k)| ≤ r} ≥ 1− b,

where x̃i(k) is the position of node i at time k after the
randomized mechanism and xi(k) is the original one without
any randomized mechanism.
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C. Problem of Interests

We consider a mechanism to hide positions of the agents
by adding noise to the position. The mechanism is

M : x̃i(k) = xi(k) + ηi(k),∀i ∈ V,

where ηi(k) is the independent noise variable with zero
mean, i.e., E(ηi(k)) = 0, and exponentially decaying vari-
ance Var(ηi(k)) = ϕkσ2, ϕ ∈ (0, 1). Let z̃(k) be the state
of agents after adding noise. Then, the noise vector is

Γ(k) = [ η1(k) 0 η2(k) 0 · · · ηn+1(k) 0 ]>.

Thus, the privacy preserving second-order consensus algo-
rithm is given by{

z̃(k + 1) = Qz̃(k) + Φ + Γ(k + 1),

z̃(0) = z(0) + Γ(0).
(4)

There are acceleration, velocity, and position coupled in
the system and information flow in a directed topology is
not symmetric. How noise affects convergence of the system
under directed topology will be explored. Besides, little work
has been done about the privacy protection of second-order
consensus by adding random noise based on differential
privacy. The system accuracy is also focused on in our work
considering the noise for privacy concerns.

III. MAIN RESULTS

A. Convergence Analysis

The algorithm (4) needs to guarantee that xi(k) →
xn+1(k) + ∆xi, vi(k)→ vn+1(k) asymptotically. And after
adding noise the trajectories of agents should still converge.

Lemma 1: Real symmetric matrices can be always orthog-
onally similar to diagonal matrix.

Let the eigenvalues of L be λLi , i ∈ {1, 2, · · · , n + 1},
where 0 = λL1 ≤ λL2 ≤ · · · ≤ λLn+1. Let Q̃ = Q>Q.
And λQ̃1 , λ

Q̃
2 , · · · , λ

Q̃
2n+2 denote the eigenvalues of the real

symmetric matrix Q̃, where λQ̃1 ≤ λ
Q̃
2 ≤ · · · ≤ λ

Q̃
2n+2. From

Lemma 1, it follows that

Q̃ = P−1ΛP = P−1diag(λQ̃i )P, i = 1, · · ·, 2n+ 2, (5)

which is a unit orthogonal similar diagonalization of Q̃. P
is a unit orthogonal matrix with elements pij , for all i, j =
1, · · ·, 2n+ 2 and P−1 = P>.

Theorem 1: (4) guarantees convergence iff G contains a
spanning tree and the following conditions are satisfied

i) 
τ2γ0 − 2τγ1 >

−4Re(λL
i )

|λL
i |2

,

γ1 > τγ0 > 0,

(τ2γ0 − 2τγ1)|λLi |2 + 4Re(λLi ) >
4γ0Im2(λL

i )

|λL
i |2(γ1−τγ0)2

,

(6)

ii) for all λQ̃j /∈ (−1, 1], there exists a P such that
pj(2i−1) = 0, i = 1, 2, · · · , n+1, j ∈ {1, 2, · · · , 2n+2}.
Proof: First, since lim

k→∞
ϕkσ2 = 0, the noise input will

exponentially decay to zero overtime, it does not change the

consensus of the system. Referring to Theorem 2 in [23], we
consider variable sampling time in this paper. It is obtained
that agents achieve consensus asymptotically iff the graph
contains a spanning tree and the gains are selected to satisfy
conditions as (6) for i = 1, 2, · · · , n+ 1.

Second, we consider whether the error of trajectories
converges with the evolution of noise. Define the error vector
at time k as e(k)

∆
= z̃(k)− z(k). Note that here we remove

the noise added at time k, because only the real state vector
is taken into account at k. Then after adding noise,

z̃(k) = Qkz(0) +

k−1∑
i=0

QiΦ +

k∑
s=1

QsΓ(k − s). (7)

Then the error vector is obtained that e(k) =
k∑
s=1

QsΓ(k − s). The expectation of mean square error

can be written as

E[e>(k)e(k)] = E{
k∑
s=1

Γ>(k − s)Q̃sΓ(k − s)}.

Let q̃ii(s), i = 1, 2, · · ·, 2n + 2 be the diagonal elements of
the matrix Q̃s, we have

E[e>(k)e(k)] = σ2
n+1∑
i=1

k∑
s=1

ϕk−sq̃(2i−1)(2i−1)(s).

In order to ensure the convergence of the system, it is
required that lim

k→∞
E[e>(k)e(k)] <∞, i.e.

lim
k→∞

σ2
n+1∑
i=1

k∑
s=1

ϕk−sq̃(2i−1)(2i−1)(s) <∞.

According to (5), we have Q̃s = P>diag((λQ̃1 )s)P . There-
fore, there holds

q̃(2i−1)(2i−1)(s) =

2n+2∑
j=1

p2
j(2i−1)(λ

Q̃
j )s,

and

lim
k→∞

σ2
n+1∑
i=1

k∑
s=1

ϕk−sq̃(2i−1)(2i−1)(s)

= σ2 lim
k→∞

ϕk[

n+1∑
i=1

p21(2i−1)

ϕ−1λQ̃
1 − (ϕ−1λQ̃

1 )
k+1

1 − ϕ−1λQ̃
1

+ · · · +

n+1∑
i=1

p2(2n+2)(2i−1)

ϕ−1λQ̃
2n+2 − (ϕ−1λQ̃

2n+2)
k+1

1 − ϕ−1λQ̃
2n+2

].

To ensure that the above limit exists, the limit of each
element in the RHS (right hand side) of the last equation
must exist. For any λQ̃m, one can obtain

lim
k→∞

ϕk
n+1∑
i=1

p2
m(2i−1)

ϕ−1λQ̃
m−(ϕ−1λQ̃

m)
k+1

1−ϕ−1λQ̃
m

= −
n+1∑
i=1

p2
m(2i−1) ·

1

ϕ−λQ̃
m

· lim
k→∞

(λQ̃m)k+1.

(8)
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From (8), we obtain that the limit exists iff λQ̃m ∈ (−1, 1], or
n+1∑
i=1

p2
m(2i−1) = 0 that is pm(2i−1) = 0, i = 1, 2, · · · , n+ 1,

which completes the proof.
Remark 1: Theorem 1 gives the mathematical expression

of the sufficient and necessary conditions to guarantee the
convergence of the algorithm. Among them, condition i) can
be achieved by adjusting control gains γ0, γ1 and sampling
time τ . And condition ii) can also be satisfied by setting an
appropriate communication topology. In simulation, it is easy
to find that this condition can be meet for most topologies.

B. Convergence Rate

We consider the impact of the added noise Γ(k) on the
performance of the consensus algorithm. Let us define the
convergence rate β of our privacy preserving second-order
consensus algorithm as

β
∆
= sup {E[||z̃i(k)− z̃n+1(k)−∆i||]}

1
k ,

where ∆i = [ ∆xi 0 ]> is a constant vector.
Theorem 2: (Convergence Rate). The convergence rate β

of (4) in a discrete-time multi-agent system equals to

β = max{|λ∗|,√ϕ}, (9)

where λ∗ denotes the maximum of eigenvalues of Q whose
moduli are less than 1.

Proof: From (7), we have

z̃(k) = Qkz̃(0) +

k−1∑
i=0

QiΦ +

k−1∑
s=0

QsΓ(k − s). (10)

Then, we transform the system into a Jordan standard type.
Let J = T−1QT , Jk = T−1QkT , where T is the transfor-
mation matrix, J is a Jordan standard type of Q, Ji is the
Jordan block, and its diagonal elements are eigenvalues of
Q. Hence, there holds

J = diag(J1, J2, · · ·), Jk = diag(Jk1 , J
k
2 , · · ·).

Then, (10) turns into

z̃′(k) = JkT−1z(0) +

k−1∑
i=0

J iT−1Φ +

k∑
s=0

JsT−1Γ(k − s).

Define eigenvalues of Q as λ(Q) =
{λ1(Q), · · · , λ2n+2(Q)}, and λk(Q) =
{λk1(Q), · · · , λk2n+2(Q)}. It can be seen that elements
of Jk are linear combinations of λk(Q), λk−1(Q), · · · ,
and the diagonal elements are exactly λk(Q). Define the
linear combination of λki (Q), λk−1

i (Q), · · · , λ0
i (Q) as

l(λki (Q), · · · , λ0
i (Q)), i = 1, 2, · · · , 2n+ 2. We can derive

z̃′(k) =[l(λk
i (Q), · · ·, λ0

i (Q))](2n+2)×1 +

k∑
s=0

[l(λk
i (Q),

· · ·, λ0
i (Q))](2n+2)×(2n+2) ·


η1(k − s)

0
· · ·

ηn+1(k − s)
0

 ,

where [l(λki (Q), · · · , λ0
i (Q))]ij denotes a matrix with i rows

and j columns whose elements are l(λki (Q), · · · , λ0
i (Q)).

Hence, there holds

z̃(k) = [l(λk
i (Q), · · ·, λ0

i (Q))](2n+2)×1 +

k∑
s=0

[l(λs
i (Q)ηj(k − s),

· · ·, λ0
i (Q)ηj(k − s))](2n+2)×1,

where i = 1, 2, · · · , 2n+ 2, j = 1, 2, · · · , n+ 1. Then,

z̃i(k)− z̃n+1(k) = [l(λki (Q), · · ·, λ0
i (Q))]2×1

+

k∑
s=0

[l(λsi (Q)ηj(k − s),

· · ·, λ0
i (Q)ηj(k − s))]2×1.

(11)

From (11), the expectation of its norm’s square is

E[||z̃i(k)− z̃n+1(k)−∆i||2]

= ρ1(k + 1)2ϕk+1 + ρ2(λ∗)2k+1 + ρ3,

where ρ1, ρ2 and ρ3 are constant coefficients. The conver-
gence rate is obtained that

β = max{|λ∗|,√ϕ}.

Therefore, the convergence rate of the algorithm is decided
by the eigenvalues of the transition matrix and decaying
coefficient of the noise variance.

C. Privacy Analysis

Let {x1(0), x2(0), · · · , xn+1(0)} be the set of initial po-
sitions, which is protected to ensure privacy of the system.

Assumption 1: There is only one different element be-
tween two sets θ = {x1(0), x2(0), · · · , xn+1(0)} and θ′ =
{x′1(0), x′2(0), · · · , x′n+1(0)}, and

||x′m(0)− xm(0)|| ≤ ∆,

where xm and x′m are the different elements in θ and θ′

respectively, ∆ is a positive real number.
We assume the noise ηi(k) is a continuous random vari-

able, and its probability density function (PDF) is fk(η). An
adversary has potential access to all group communications.
The query from adversaries of position set is the same as the
intercommunicating set. Hence, for all i ∈ 1, 2, · · · , n+ 1,
it holds

Pr{M(que(θ)) ∈ S} =

∫
S

n+1∏
i=1

f0(u− xi(0))du

≤ eε
∫
S

n+1∏
i=1

f0(u− x′i(0))du+ δ.

The sensitivity, ε and δ are decided by PDF of adding noise.
Here, the certain sensitivities and boundaries of ε and δ when
adding Gaussian or Laplacian noise are provided. Recall that
the Laplace distribution with zero mean and scaled parameter
b, denoted by Lap(b) and Gaussian distribution with zero
mean and variance σ2, denoted by N(0, σ2).
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Lemma 2: Let ε > 0, 0.5 > δ > 0, (4) guarantees
(ε, δ)−differential privacy if ηi(k) ∼ N(0, ϕkσ2) and

ϕ0σ2 ≥ ∆

2ε
(W +

√
W 2 + 2ε),W = Q−1(δ),

where Q(δ) := 1√
2π

∫∞
δ
e−

u2

2 du.

Lemma 3: (4) guarantees ε−differential privacy if

ηi(k) ∼ Lap(
√

ϕk

2 σ) and
√

ϕ0

2 σ ≥
∆
ε .

Remark 2: Lemma 2 and Lemma 3 can be derived by
Theorem 2 and Theorem 3 in [24]. The query of position
set is the same as the intercommunicating set. Based on
Assumption 1, the sensitivity is upper bounded by ∆.

From Lemma 3 and Lemma 4, it can be seen that the
privacy level is decided by the noise variance at the initial
time. When ε is smaller, ϕ0σ2 should be correspondingly
larger. And for constant variances, ε and δ are inversely
proportional. Smaller ε means a higher level of privacy
protection and larger variances.

It is worth noting that the “initial state” to be protected
is the state eavesdropped by malicious attackers in the
beginning. For instance, if an attacker starts observing at
time k, it is the noise added at time k that protects privacy.
So in order to guarantee the above privacy preserving level,
the variance of noise should be ϕkσ2 instead of ϕ0σ2 in this
case. Since the exponential decay is fast, a much larger value
of σ2 is needed to ensure a certain level of privacy.

D. Accuracy Analysis

Due to the influence of noise, the trajectory of agents will
fluctuate near the original one. The amplitude of this fluctu-
ation can be considered as a measure of system accuracy.

Theorem 3: (4) achieves ( σ2

(1−ϕ)α2 , α)-accuracy.
Proof: We consider the accuracy of the leader’s position

state. According to (2) (Mi represents the constant item)

ui(k) = −
n+1∑
j=1

aij [γ1(vi(k)− vj(k)) (12)

+γ0(xi(k)− xj(k)) +Mi]. (13)

From (12), the iteration formula of position is given by

xi(k + 1) = xi(k) + τvi(k − 1) − τ2
n+1∑
j=1

aij [γ1(vi(k − 1)

− vj(k − 1)) + γ0(xi(k − 1) − xj(k − 1)) +Mi].

Since the acceleration of leader is 0, let vn+1(0) =
vn+1(1) = · · · = vn+1(k) = vn+1. So without noise

xn+1(k) = xn+1(0) + kτ · vn+1.

After adding noise, the position at time k of the leader is

x̃n+1(k) = xn+1(0) + kτ · vn+1 +

k∑
s=0

ηn+1(s).

By Chebyshev’s inequality for any k ≥ 0

Pr{|x̃n+1(k)− xn+1(k)| ≤ α} ≥ 1−
Var(

k∑
s=0

ηn+1(s))

α2 .

From the definition of ηi(t), we have

Var(

k∑
s=0

ηn+1(s)) = σ2
k∑
s=0

ϕs = σ2 1− ϕk+1

1− ϕ
.

Let k → ∞, the variance converges to σ2

1−ϕ . And since the
position errors of the followers and the leader will converge
to zero over time, there holds

lim
k→∞

Pr{|x̃i(k)− xi(k)| ≤ α} ≥ 1− σ2

α2(1− ϕ)
,

for all i = 1, · · · , n+ 1.
From Theorem 3, it is noted that the accuracy of the

position states of agents is influenced by the coefficients ϕ
and σ2 of the noise variance. If the variance becomes larger,
the probability that deviation from the original trajectory
within α becomes smaller, which means less accuracy.

IV. SIMULATION

We consider the formation of 4 followers and 1 leader in
2-D plane for intuitive. The privacy preserving second-order
consensus algorithm is used in x−direction and y−direction
independently. The following adjacent matrix A is applied

A =


1 1 0 0 0
1 1 0 0 1
0 1 1 1 1
1 1 0 1 0
0 0 0 0 1

 .
The relative positions that followers keep to the leader

in x−direction and y−direction in the formation are
{−2,−6,−2,−6, 0} and {4, 4,−4,−4, 0} respectively. The
initial coordinates of all agents are {−10,−4, 2, 4, 0} in
x−direction and {6,−10, 8,−15, 0} in y−direction. The
initial velocities in two directions are both 1 m/s for the
leader and 0 m/s for followers.

First, let γ0 = 1, γ1 = 2, τ = 0.1s, and we add Gaussian
noise with σ2=1, ϕ = 0.9. Fig. 1 illustrates the position and
speed errors of followers relative to the leader while they are
reaching consensus over time. The errors gradually decay to
zero so that followers can keep up with the leader accurately,
and the pre-set formation can still be formed.
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Fig. 1: Relative errors of followers to leader

Then, we investigate the relationship between privacy and
accuracy in this system. Gaussian and Laplacian noise are
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added to the node states separately. We selected α = 5,
ϕ = 0.9, ∆ = 0.5 and different ε from 0.5 to 1.5. Let
δ = 0.02 in the case of Gaussian noise. We examine the
probability that the position deviation was bounded by α. In
order to ensure the accuracy as much as possible, each set
of parameters was tested 10000 times.
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Fig. 2: Relationship of privacy and accuracy

In Fig. 2, the blue/red solid line plots the result of the
actual simulation, and the dashed line is the theoretically
calculated lower bound. We see that actual probabilities and
the lower bound have the same trend from Fig. 2(a) and Fig.
2(b). There is a tradeoff between privacy and accuracy level.
To guarantee a higher level of privacy, adding larger noise
is needed, which makes the system performance worse.

It can be seen that we only need to generate one n + 1
dimensional random number matrix once at the beginning,
the noise adding mechanism does not bring additional com-
putational overhead. Therefore, the time complexity of the
proposed privacy-preserving second-order consensus algo-
rithm is O(n2). However, if we use Paillier encryption
mechanism in [17] in the actual system, each agent needs to
encrypt and decrypt the transmitted state in each iteration.
In fact, in the case of a large-scaled network, the computing
burden is heavy and may even reach the second delay, then
our proposed algorithm will be more advantageous.

V. CONCLUSION

In this paper, we considered leader-following second-order
consensus in multi-agent systems while preserving the pri-
vacy of initial positions. A privacy-preserving second-order
consensus algorithm was proposed by adding random noise
with exponentially decaying variance. The sufficient and
necessary conditions of convergence of the algorithm were
provided and the convergence rate was specified. In addition,
we performed a privacy analysis based on differential privacy
and uncovered the certain boundaries of privacy degree when
Gaussian or Laplacian noise was added. The system accuracy
was characterized to show the boundary of probability that
the trajectory deviation was bounded within a certain range.
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