
CPCA: A Chebyshev Proxy and Consensus based Algorithm

for General Distributed Optimization

Zhiyu He, Jianping He*, Cailian Chen and Xinping Guan

Shanghai Jiao Tong University

May 2020

*Corresponding author: Jianping He, Email: jphe@sjtu.edu.cn
1 / 38

Distributed Optimization

𝑥
𝑖

𝑁

𝑖=ଵ

𝑖

𝑁

𝑖=ଵ

𝑖

𝑖

ଵ

ଵ

𝑁

𝑁

Figure 1 An illustration of distributed optimization

I What is distributed optimization?

Distributed optimization enables agents

in networked systems to collaboratively

solve the problem of optimizing the

average of local objective functions.

I Why not centralized optimization?

• possible lack of central authority

• efficiency, privacy-preserving,

robustness and scalability issues1

1A. Nedić et al., “Distributed optimization for control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 77–103, 2018
2 / 38

Distributed Optimization: Application Scenarios
• Distributed optimization empowers networked multi-agent systems

(a) Distributed Learning2 (b) Distributed Localization in Sensor Networks3

(c) Distributed Coordination in Smart Grid4 (d) Distributed Control of Multi-robot Formations5

Figure 2 Application scenarios of distributed optimization
2S. Boyd et al., Found. Trends Mach. Learn., 2011, 3 Y. Zhang et al., IEEE Trans. Wireless Commun., 2015, 4 C. Zhao et al., IEEE Trans. Smart Grid, 2016, 5 W. Ren et al., ROBOT

AUTON SYST., 2008.
3 / 38

Distributed Optimization: Application Scenarios

• Distributed Learning

Suppose that the training sets are so large that

they are stored separately at multiple servers.

We aim to train the model so that the overall loss

function is minimized.

min
x
F (x) =

∑
i

fi(x),

fi(x) =
∑
j∈Di

lj(x),

where Di denotes local dataset, and fi(·), lj(·)

denote loss functions.

• Distributed Coordination in Smart Grid

We aim to coordinate the power generation of a

set of distributed energy resources, so that

. demand is met, . total cost is minimized.

min
N∑
i=1

fi(Pi),

s.t.
N∑
i=1

Pi = Pd,

s.t. Pi ≤ Pi ≤ Pi,

where fi(·) denotes the function of generation

cost of each energy resource.

4 / 38

Developments of Distributed Optimization

4

DGD
undirected graph

sub-linear rate
(2009)

A. Nedich
ASU

EXTRA
undirected graph

linear rate
(2015)

W. Shi
Princeton

SONATA
directed graph

(2019)

A. Olshevsky
BU

1st-order convex
optimization algorithms

Push-DIGing
directed graph

linear rate
(2017)

ZONE
undirected graph

(2019)

G. Scutari
Purdue

M. Hong
UMN

non-convex
optimization algorithms

1st-order 0th-order

6A. Nedic et al., IEEE Trans. Autom. Control, 2009, 7W. Shi et al., SIAM J. Optim., 2015, 8A. Nedic et al., SIAM J. Optim., 2017, 9G. Scutari et al., Math. Program., 2019, 10D. Hajinezhad

et al., IEEE Trans. Autom. Control, 2019. 5 / 38

Developments of Distributed Optimization
I We classify existing distributed optimization algorithms into two categories:

• Primal Methods: Distributed (sub)Gradient Descent11, Fast-DGD12, EXTRA13, DIGing14,

Acc-DNGD15, ZONE16, SONATA17. . .

feature: combine (sub)gradient descent with consensus, so as to drive local estimates to converge

in the primal domain

• Dual-based Methods: Dual Averaging18, D-ADMM19, DCS20, MSDA21, MSPD22, . . .

feature: introduce consensus equality constraints, and then solve the dual problem or carry on

primal-dual updates to reach a saddle point of the Lagrangian

cons: hard to be extended to deal with time-varying or directed graphs
11A. Nedic et al., IEEE Trans. Autom. Control, 2009, 12D. Jakovetić et al., IEEE Trans. Autom. Control, 2014, 13W. Shi et al., SIAM J. Optim., 2015, 14A. Nedic et al., SIAM J. Optim.,

2017, 15G. Qu et al., IEEE Trans. Autom. Control, 2019, 16D. Hajinezhad et al., IEEE Trans. Autom. Control, 2019, 17G. Scutari et al., Math. Program., 2019, 18J. C. Duchi et al., IEEE Trans.

Autom. Control, 2011, 19W. Shi et al., IEEE Trans. Signal Process., 2014, 20G. Lan et al., Math. Program., 2017, 21K. Scaman et al., in Proc. Int. Conf. Mach. Learn., 2017, 22K. Scaman et

al., in Adv Neural Inf Process Syst, 2018.
6 / 38

Motivations

Two notable unresolved issues within the existing works

• growing load of oracle queries with respect to the iterations

. results from the requirements of evaluations of gradients or values of local objectives at one or

several points within every iteration

=⇒ the selection of step-sizes also influences convergence speeds, which complicates the analysis

• hardness of achieving iterative convergence to the global optimal points

. results from the nonconvex nature of the general objectives

Is it possible to overcome these issues?

7 / 38

Contributions

Main contributions of this work

• We propose a novel algorithm, CPCA, leveraging polynomial approximation and consensus

• CPCA has the advantages of

◦ able to obtain ε globally optimal solutions ⇐= ε is any arbitrarily small given tolerance

◦ computationally efficient ⇐= the required 0th-order oracle queries are independent of iterations

◦ distributively terminable once the precision requirement is met

• We provide a comprehensive analysis of the accuracy and complexities of CPCA

8 / 38

Problem Formulation

The constrained distributed nonconvex optimization problem we consider is

min
x

f(x) = 1
N

N∑
i=1

fi(x),

s.t. x ∈ X =
N⋂
i=1

Xi, Xi ⊂ R.

Assumptions

1. G is a static, connected and undirected graph.

2. Every fi(x) is Lipschitz continuous on Xi.

3. All Xi are closed, bounded and convex sets.

Note

• The assumptions we made on graphs and

objectives are common within the literatures.

• The extension to time-varying directed graphs

is feasible, and is presented in our recent work.
9 / 38

Key Ideas
• Inspirations

Approximation is closely linked with optimization.

(a) Newton’s method

Source: S. Boyd et al., Convex optimization. 2004

(b) Majorization-Minimization Algorithm

Source: Y. Sun et al., IEEE Trans. Signal Process., 2016

Figure 3 Optimization algorithms based on approximation

Both of them are based on local approximations. What if global approximations?
10 / 38

Key Ideas

• Inspirations

Researchers use Chebyshev polynomial approximation to substitute for the target function defined

on an interval, so as to make the study of its property much easier.

f(x) ≈ p(x) =
m∑
i=0

ciTi

(
2x− (a+ b)

b− a

)
, x ∈ [a, b].

Chebfun Toolbox for MATLAB

• Insights
turn to optimize the approximation (i.e. the proxy) of the global objective, to obtain ε-optimal
solutions for any arbitrarily small given error tolerance ε

• use average consensus to enable every agent to obtain such a global proxy

• optimize locally the global proxy by finding its stationary points, or solving SDPs

11 / 38

Overview of CPCA

𝑖 𝑖
Adaptive Chebyshev

Interpolation

Stage 1: Construction of Local Proxies

Stage 3: Optimization of Global Proxy

𝑖
𝐾 Optimization by

Solving SDPs

Stage 2: Average Consensus

𝑒
∗

𝑒
∗

(𝜀-globally optimal)

(local proxy)

𝑖
଴

𝑖
𝐾

Extract Coefficients

Rep.

Terminate at
Kth iteration

Consensus with
Distributed Stopping

𝑖

proxy for global objective 𝑓(𝑥)

𝑐଴ ··· 𝑐௠

···

𝑐଴ ··· 𝑐௠

local vector 𝑝𝑖
଴

local vector 𝑝𝑖
𝐾

converge to 𝑝

average

𝑐ଵ଴ 𝑐ଵ௠భ

··· 𝑐௜௠೔

𝑐௜଴

𝑝 =
1

𝑁
෍ 𝑝𝑖

଴

𝑁

𝑖ୀଵ

Figure 4 The architecture of CPCA

12 / 38

Initialization: Construction of Local Chebyshev Proxies

• Goal

Construct the Chebyshev polynomial approximation pi(x) for fi(x), such that

|fi(x)− pi(x)| ≤ ε1, ∀x ∈ X,

where X =
⋂N
i=1 Xi , [a, b].

• Details

1. Run a finite number of max/min consensus iterations in advance to obtain the intersection set X.

2. Use Adaptive Chebyshev Interpolation23 to obtain pi(x).

3. Maintain p0
i storing the Chebyshev coefficients of pi(x)’s derivative through certain recurrence formula.

23J. P. Boyd, Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles. SIAM, 2014, vol. 139.
13 / 38

Initialization: Construction of Local Chebyshev Proxies

Figure 5 An illustration of Adaptive Chebyshev Interpolation

Source: J. P. Boyd. SIAM, 2014, vol. 139

14 / 38

Initialization: Construction of Local Chebyshev Proxies

• Examples

. Setup: precision requirement ε1 = 10−6, constraint set X = [−3, 3]

◦ Case I

f1(x) = 1
2 e0.1x + 1

2 e−0.1x

p1(x) =
∑4

j=0 cjTj
(
x
3

)

p0
1 = [1.0226, 0, 0.0303, 0, 1.1301×10−4]T

Adaptive Interpolation

recurrence formula

(In fact, |f1(x)− p1(x)| ≤ 4.8893× 10−8, x ∈ X.)

◦ Case II

f2(x) = 1
4 x4 + 2

3 x3 − 1
2 x2 − 2x

p2(x) =
∑4

j=0 cjTj
(
x
3

)

p0
2 = [5.3437, 7, 17.25, 9, 6.75]T

Adaptive Interpolation

recurrence formula

(In fact, |f2(x)− p2(x)| ≤ 1.7036× 10−14, x ∈ X.)

15 / 38

Iteration: Consensus-based Update of Local Vectors

• Goal

Make local vectors pKi converge to the average p̄ of all the initial values p0
i , i.e.,

max
i∈V

∥∥pKi − p̄∥∥∞ ≤ δ,
where

δ = ε2

1 + b−a
2
(
lnm+ 3

2
)

is proportional to the given precision ε2, with m = maxi∈V mi.

• Strategies

Run linear time average consensus24 for certain rounds.

24A. Olshevsky, SIAM J. Optim., 2017.
16 / 38

Iteration: Consensus-based Update of Local Vectors

• Further Assumption: Every agent in the network knows an upper bound U on N .

• Iteration Rules 
pki = qk−1

i + 1
2
∑
j∈Ni

qk−1
j − qk−1

i

max(di, dj)
,

qki = pki +
(

1− 2
9U + 1

)
(pki − pk−1

i).

The number of iterations K is set as

K ← max
(⌈

ln(δ/2
√

2U‖rUi − sUi ‖∞)
ln ρ

⌉
, U

)
,

where ρ =
√

1− 1/(9U) is the decaying rate of the error25, and rki , ski are two variables updated

based on max/min consensus, so that ‖rUi − sUi ‖∞ equals to maxi,j∈V
∥∥p0

i − p0
j

∥∥
∞.

25A. Olshevsky, SIAM J. Optim., 2017.
17 / 38

Iteration: Consensus-based Update of Local Vectors

Lemma 1
With K ∼ O

(
N log

(
N logm
ε2

))
iterations, we have

max
i∈V

∥∥pKi − p̄∥∥∞ ≤ δ.
• The proximity between pKi and p̄ translates to

|pKi (x)− p̄(x)| ≤ ε2,

where pKi (x), p̄(x) are the Chebyshev polynomials recovered from pKi , p̄, respectively.

18 / 38

Iteration: Consensus-based Update of Local Vectors
• The order of K can be brought down to O

(
N log

(
logm
ε2

))
by incorporating distributed

stopping mechanism26 into consensus iterations.

଴ ଴

଴ ଴ ଴

௧ ଴

௧ ଴

ஶ

Yes

Save
exit

No

Set ௎ ௎ ௎

Stopping criterion
is satisfied

Initialization max/min
consensus
converge

Run average and max/min consensus in parallel

Figure 6 An illustration of average consensus with distributed stopping

26V. Yadav et al., in Proc. 45th Annu. Allerton Conf., 2007. 19 / 38

Iteration: Consensus-based Update of Local Vectors

• When CPCA is extended to time-varying digraphs, the iteration rules become

I Set x0
i ← p0

i , y
0
i ← 1, and update xti and yti according to push-sum average consensus

xt+1
i =

N∑
j=1

atijx
t
j , yt+1

i =
N∑
j=1

atijy
t
j ,

where atij is set as 1/dout,t
i if j ∈ N in,t

i , and 0 otherwise.

Note: pti , xti/y
t
i converges to p̄ geometrically.

I Update auxiliary variables rti and sti in parallel according to max/min consensus.

rt+1
i (k) = max

j∈N in,t
i

rtj(k), st+1
i (k) = min

j∈N in,t
i

stj(k), k = 0, . . . ,m.

These variables are reinitialized as pti , xti/y
t
i every U iterations.

20 / 38

Iteration: Consensus-based Update of Local Vectors

• Iteration rules of CPCA when extended to time-varying digraphs

଴ ଴

଴

଴ ଴ ଴

௧ ଴

௧ ଴

ஶ

Yes

Set
exit

No

Set ௎ ௎ ௎

Stopping criterion
is satisfied

Initialization max/min
consensus
converge

Figure 7 An illustration of push-sum consensus with distributed stopping

21 / 38

Optimize Polynomial Proxy based on Stationary Points

• Goal

Agent i optimize the polynomial proxy pKi (x) recovered from pKi .

• Intuitions

. After the initialization, we have |p̄(x)− f(x)| ≤ ε1, x ∈ X.

After the iteration, we have |pKi (x)− p̄(x)| ≤ ε2, x ∈ X.

. If we set ε1 = ε2 = ε
2 , it follows that |pKi (x)− f(x)| ≤ ε, x ∈ X.

. The difference between the optimal values of f(x) and pKi (x) is less than ε.

. The points in the optimal set X∗e of pKi (x) are ε-optimal solutions of the considered problem.

22 / 38

Optimize Polynomial Proxy based on Stationary Points

• Procedures

1. Recover the polynomial proxy pKi (x) from pKi .

2. Construct the colleague matrix MC from pKi , and compute its real eigenvalues.
(These are the stationary points of pKi (x).)

MC =



0 1
1
2 0 1

2
1
2 0 1

2

. . .
. . .

. . .
1
2 0 1

2

− c0
2cm

− c1
2cm

− c2
2cm

· · · 1
2 −

cm−2
2cm

−
cm−1
2cm


m×m

3. Compute and compare the critical values of pKi (x), and take the optimal points to form X∗e .

23 / 38

Optimize Polynomial Proxy based on Stationary Points
• Why are the eigenvalues of MC exactly the stationary points of pKi (x)?

. Note that for Chebyshev polynomials, we have
1
2

Tk−1(x) +
1
2

Tk+1(x) = xTk(x).

Let v = [T0(x), . . . , Tn−1(x)]T . If x is the root of dpKi (x)/dx = 0, then MCv = xv. Hence, the n roots of

dpKi (x)/dx = 0 correspond to n eigenvalues of MC .

Compare: The roots of p(x) = a0 + a1x+ . . .+ anx
n = 0 are the eigenvalues of

C =


0 1

0 1

. . .
. . .

0 1

− a0
an

− a1
an

· · · −
an−2

an
−

an−1
an

 .

Note: This method is suitable for numerical computations, but involves some errors that can’t be

theoretically characterized.
24 / 38

Alternative: Optimize Polynomial Proxy by Solving SDPs
• Goal

Agent i optimize the polynomial proxy pKi (x) recovered from pKi .

• Intuitions

I The optimization of pKi (x) on [a, b] is equivalent to

max
x,t

t s.t. pKi (x)− t is non-negative, x ∈ [a, b].

I For g(x) , pKi (x)− t, its non-negativity on [a, b] holds if and only if it can be expressed as

g(x) =

(x− a)h1(x) + (b− x)h2(x), if m is odd,

h1(x) + (x− a)(b− x)h2(x), if m is even,

where h1(x), h2(x) are sum of squares (SOS), and are of even degree27.

I SOS is linked with positive semi-definiteness. =⇒ The problem can be transformed to a SDP.
27Y. Nesterov, “Squared functional systems and optimization problems,” in High performance optimization, Springer, 2000.

25 / 38

Alternative: Optimize Polynomial Proxy by Solving SDPs
• Procedures

Suppose pKi = [c0, c1, . . . , cm]T . When m is odd, the SDP reformulation is

max
t,Q,Q′

t

s.t. c0 = t+
∑

u,v even

(−1)
u+v

2
(
bQ′uv − aQuv

)
ci = 1

2
∑

(u,v)∈A

(
bQ′uv − aQuv

)
+ 1

4
∑

(u,v)∈B

(
Quv −Q′uv

)
, i = 1, . . . ,m

Q,Q′ ∈ Sm+ ,

where A = {(u, v)|u+ v = i ∨ |u− v| = i}, B =
{

(u, v)|u+ v = i− 1 ∨ |u− v| = i− 1 ∨ |u+ v − 1| = i ∨
∣∣|u− v| − 1

∣∣ = i
}

.

Note: • SDP can be efficiently solved through the use of CVX, which employs the interior-point method.

Note: • An error tolerance ε3 can be set to help terminate the solving procedure.
26 / 38

Accuracy of CPCA

• CPCA ensures that every agent obtains ε-optimal solutions for any arbitrarily small given tolerance ε.

Theorem 2
With CPCA, every agent obtains ε-optimal solutions for the considered problem, i.e.,

|f∗e − f∗| ≤ ε,

where f∗ is the optimal value.

• ε is used to set ε1 and ε2 (both equal to ε/2) to regulate the stages of initialization and iteration, so

as to guarantee the meet of the precision requirement.

27 / 38

Complexities of CPCA

Table 1 Complexities of CPCA

Stages Elementary Operations 0th-order Oracle Queries Inter-communications

initialization O
(
m2 logm

)
O(m) 0

iteration O
(
N log

(
N logm

ε

))
0 O

(
N log

(
N logm

ε

))
solve O

(
m3) 0 0

whole O
(
N log

(
N logm

ε

))
O(m) O

(
N log

(
N logm

ε

))
N : the size of the network m: the largest order of the polynomial approximations

Note: • The oracle complexities are independent of N .

Note: • m is relevant to the smoothness of objectives, and will not be very large generally (e.g, 10 ∼ 102).
28 / 38

Complexities of CPCA
Table 2 Comparisons of CPCA and Other State-of-the-arts for Nonconvex Distributed Optimization

Algorithms Networks Oracles Communications

0th-order 1st-order

Alg. 1 28 I O
(
d
ε

)
/ O

(
d
ε

)
SONATA29 II / O

(
1
ε

)
O
(

1
ε

)
CPCA I O(m) / O

(
log
(logm

ε

))
E-CPCA II O(m) / O

(
log m

ε

)
Note: • I and II refers to static undirected and time-varying directed graphs, respectively.

Note: • N denotes the number of agents, and m denotes the maximum degree of local approximations.
28Y. Tang et al., arXiv e-prints, arXiv:1908.11444, 2019, 28 G. Scutari et al., Math. Program., 2019.

29 / 38

Numerical Experiments

I Optimization Over Static Undirected Graphs

Algorithms to Compare

• CPCA

• Distributed Projected sub-Gradient Descent (D-PGD)30 (with step size ηt = 5
4 ·

N
t).

Network Models

The network has N = 36 agents, and G varies from:

• 9-cycle graph

• 6× 6 grid graph

• Erdos-Renyi random graph with connectivity probability 0.4

30A. Nedic et al., “Constrained consensus and optimization in multi-agent networks,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 922–938, 2010.
30 / 38

Numerical Experiments
Objective Functions

• Case I: the objective functions are

fi(x) = aie
bix + cie

−dix, x ∈ Xi = [−3, 3],

where ai, ci ∼ U(0, 1), bi, di ∼ U(0, 0.2).

• Case II: the objective functions are

fi(x) = aix
4 + bix

3 + cix
2 + dix+ ei, x ∈ Xi = [−3, 3],

where ai to ei satisfy normal distributions, with µ being 1/4, 2/3,−1/2,−2 and 0 respectively, and

σ all being 0.1.

Note: Case I: convex objectives Case II: non-convex objectives
31 / 38

Numerical Experiments
• Horizontal axis: Number of Iterations • Vertical axis: Objective Error ε

0 100 200 300 400 500 600
Iterations T

10-7

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e
E
rr

or
0
(0

=
f
$ e
!

f
$
)

DPGD, Cycle Graph
Our Algorithm, Cycle Graph
DPGD, Grid Graph
Our Algorithm, Grid Graph
DPGD, Random Graph
Our Algorithm, Random Graph

(a) Simulation Results for Case I

0 100 200 300 400 500 600
Iterations T

10-7

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e
E
rr

or
0
(0

=
f
$ e
!

f
$
)

Cycle Graph
Grid Graph
Random Graph

(b) Simulation Results for Case II

Figure 8 Comparison of CPCA and D-PGD

Note: ◦ linear v.s. sub-linear convergence ◦ applicable to the cases with non-convex objectives
32 / 38

Numerical Experiments

I Optimization Over Time-varying Directed Graphs

Algorithms to Compare

• E-CPCA • SONATA-L31

Network Models

Consider a network of N = 40 agents, each of which has 2 out-neighbors besides itself at time t.

• one is on a fixed cycle • the other is chosen uniformly at random

Objective Functions

The nonconvex but Lipschitz objectives we choose are

fi(x) = ai
1 + e−x

+ bi log(1 + x2), x ∈ Xi = [−5, 5], ai ∼ N (10, 2), bi ∼ N (5, 1).

31G. Scutari et al., “Distributed nonconvex constrained optimization over time-varying digraphs,” Math. Program., vol. 176, no. 1-2, pp. 497–544, 2019.
33 / 38

Numerical Experiments
• Horizontal axis: Number of Communications • Vertical axis: Objective Error ε

20 30 40 50 60 70 80

Number of Communications

10-12

10-10

10-8

10-6

10-4

10-2

100

O
bj

ec
tiv

e
E

rr
or

 0

E-CPCA (expected)
E-CPCA (realistic)

(a) E-CPCA

100 150 200 250 300 350 400

Number of Communications

10-12

10-10

10-8

10-6

10-4

10-2

100

O
bj

ec
tiv

e
E

rr
or

 0

SONATA-L

(b) SONATA-L

Figure 9 Comparison of both algorithms regarding inter-agent communications

Note: E-CPCA is more communication-efficient due to its integrated rapidly convergent consensus protocols.
34 / 38

Numerical Experiments
• Horizontal axis: Number of Oracle Queries • Vertical axis: Objective Error ε

5 10 15 20 25 30 35 40

Number of Oracle Queries

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

S
pe

ci
fie

d
P

re
ci

si
on

 0

E-CPCA

(a) E-CPCA

100 150 200 250 300 350 400

Number of Oracle Queries

10-12

10-10

10-8

10-6

10-4

10-2

100

O
bj

ec
tiv

e
E

rr
or

 0

SONATA-L

(b) SONATA-L

Figure 10 Comparison of both algorithms regarding inter-agent communications

Note: Nor the increase of N or worsening of network’s connectivity will change the curve in Fig. 10a.
35 / 38

Summary

We present a Chebyshev Proxy and Consensus-based Algorithm (CPCA) to solve a class of distributed

nonconvex optimization problems

• with Lipschitz univariate objectives and convex local constraint sets,

• over static undirected graphs.

Features of CPCA

• able to address the problem with nonconvex objectives and obtain ε globally optimal solutions

. originates from the idea of optimizing the polynomial proxy instead

• free from evaluations of gradients or functions within the iterations, and is computationally efficient

. results from the scheme of simply employing average consensus to update coefficient vectors

36 / 38

Summary

We also discuss some possible improvements of CPCA

• incorporate distributed stopping mechanism for consensus

=⇒ make CPCA communication-efficient

• transform the optimization of polynomial proxies to SDPs

=⇒ make all the errors theoretically controllable

• employ push-sum consensus when applied to time-varying directed graphs

=⇒ the formulation and analysis of Extended-CPCA (E-CPCA) is presented in our recent work

37 / 38

Future Works

Future works include

• Apply the proposed proxy-based algorithm to deal with practical problems arising in distributed

learning, coverage control, and other applications relating to multi-agent systems.

• Leverage the idea of introducing polynomial approximation to deal with problems with multivariate

noncovex objectives.

Thank you for listening!

38 / 38

	Introduction
	Background
	Existing Works
	Motivations and Contributions

	Our Algorithm: CPCA
	Problem Formulation
	Overview of CPCA
	Algorithm Development
	Analysis of CPCA

	Numerical Experiments
	Conclusion
	Summary
	Future Works

