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Abstract— Mobile agents have attracted considerable atten-
tions for their wide applications in civilian and military fields,
where motion planning plays an important role when the
agents operate in physical world. During this process, the
agents are prone to path information leakage and malicious
attacks on trajectories, which lead to individual malfunction
or even mission failure. In order to protect the future position
information contained in history trajectory and evade physical
interception attacks, this paper studies unpredictable trajectory
design for mobile agents. The major challenges lie in two
parts. First, how to determine the optimal form of control
for one agent, in face of unknown observation accuracy and
prediction algorithm of the attacker. Second, how to extend the
control method of one agent to multiple agents with coupled
dynamics. The novelty of our work is threefold: i) Leveraging
the stochastic control method, the trajectory design problem is
formulated as optimization problems universal for various pre-
diction methods; ii) In the sense of expectation and probability
measure, we propose two kinds of optimization objectives which
are considered synthetically, and obtain the optimal control for
secure movement. iii) We extend the method to multiple agents
in formation, and achieve a trade-off between the degradation
of formation convergence and the improvement of safety level.
Simulations demonstrate and verify the effectiveness of the
proposed approach.

I. INTRODUCTION

Mobile agents have wide applications in both civilian and
military fields, such as delivery, exploration and search. In
these applications, localization, motion planning and control
have been widely studied especially when agents navigate
in dynamic or unknown environments. To ensure successful
mission implementation, the security during running process
is a major issue that needs to be tackled, drawing extensive
considerations in recent years.

As a typical cyber-physical system (CPS), mobile agents
suffer from various attacks from physical to cyber especially
when they are deployed in adversarial environments. Cyber
attacks on CPS include DoS attacks, deceptions and false
data injections, to name a few [1]. Accordingly, a series
of attack-modeling analyses, attack-detection mechanisms
and resilient algorithms have been presented to increase
the resiliency of some common CPS, e.g., smart grids and
industrial processes [2]–[4]. With the help of these tools,
certain security design of mobile agents is also able to be
guaranteed likewise [5]–[7]. The special point lies in that,
for mobile agents, motion planning plays an important role
and security problems related to motions are different from
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those of common CPS for several reasons. On one hand,
when they operate in physical world, they are physically
accessible inevitably. Their trajectories can be observed and
communications can be eavesdropped and intervened, which
make attacks feasible to conduct, e.g., physical interception
attack and information manipulation. On the other hand,
the trajectories of agents carry sensitive data about their
future positions and the task to be performed. For example,
when agents moves in a simple pattern (e.g., uniform linear
motion), their future paths are easy to be predicted as well
as the destination. Based on future positions, the attacker
can elaborately plan attack strategies to accurately intercept
them or distort them to the preset trap, leading to individual
malfunction or even mission failure. Therefore, path infor-
mation leakage and possible attack on trajectories, which
are not considered in common CPS security, are prominent
issues that need to be addressed.

Some works have been carried out to study these problems.
For example, in [8], future path information eavesdropped
issue is considered and coding scheme is presented to
guarantee secrecy. [9] presents a SVR-based attack to lure
agents to the preset trap area. This attack is conducted only
based on trajectory data without any prior information of the
system dynamics. In [10], data tampering targeted on path
distortion is analyzed and secure control is designed.

However, in terms of how to quantify secrecy of trajectory
itself and designing optimal unpredictable path, related re-
searches are still critically lacking [10]. Different from tradi-
tional anti-predator behaviors in biology or classical pursuit-
evasion games, this problem is novel and more challenging.
First, researches on anti-predator behaviors emphasize on
explanations for these mechanisms according to their specific
functions and mechanistic underpinning [11]. Although there
are evaluation methods of path complexity like information-
theoretic approach used in [12], they are hard to design the
optimal anti-predator behaviors for mobile agents. Second, in
pursuit-evasion games, the interactions between pursuers and
evaders are modeled as differential equations and an optimal
control problem is set up [13], where the model is known and
deterministic to each other, more simple than the interested
scenario with security consideration.

Motivated by above observations, in this paper, we fo-
cus on quantifying secrecy of trajectory and designing an
unpredictable trajectory for mobile agents to increase the
security during their operation. Specially, we present a s-
tochastic control method to achieve unpredictable trajectory
for mobile agents. Based on this, two optimal distributions
of stochastic control are obtained according to proposed
expectation and probability indexes. By combining results



of them, we come to the method to design control for
one agent. Then, we extend the results to formation control
of multiple mobile agents. The performance degradation of
formation convergence introduced by the stochastic control is
quantitatively evaluated. The main contributions of our work
are summarized as follows.
• From the perspective of security, we propose a stochas-

tic control method to make the trajectory of an agent
unpredictable for attackers. The method is of strong
generalization by its insensitivity to various external
estimations.

• We propose the expectation and probability measures as
optimization objectives. With both the two factors taken
into consideration, we obtain the optimal distributions
of the stochastic inputs.

• By common formation control, we extend our results
to multiple mobile agents and evaluate the perfor-
mance degradation of formation convergence, achieving
a tradeoff between the cooperation and security require-
ments.

This paper is organized as follows. In Section II, the
problem is formulated as optimization problems. In Section
III, optimization problems are solved and the optimal control
is designed for one agent. In Section IV, we extend conclu-
sions to agents in formation. Section V shows the simulation
results and Section VI concludes.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Motion Control of Mobile Agents

Consider N mobile agents moving on 2-D plane with
single-integrator kinematics, whose discrete form is

xi((l + 1)Tc)=xi(lTc)+uc,i(lTc)Tc, i=1, 2, · · · , N, (1)

where xi = [x1i , x
2
i ]
T ∈ R2 is the position vector and

uc,i = [u1c,i, u
2
c,i]

T ∈ R2 is the control input without
security concern, and Tc is corresponding control period. For
convenience, we formulate uc,i by

uc,i = gi(x1, · · · , xN ) + vi, (2)

where gi(x1, · · · , xN ) is a function of {x1, · · · , xN} and vi
is independent with the position vectors. Clearly, if there is
no interaction between agents, uc,i is determined by agent i
itself, i.e., uc,i = gi(xi) + vi.

B. Stochastic Motion and Prediction Model

To make the trajectories of mobile agents unpredictable,
an extra input θi = [θ1i , θ

2
i ]
T is added to uc,i, i.e.,

xi((l + 1)Tc) = xi(lTc) + (uc,i(lTc) + θi(lTc))Tc. (3)

We first determine the optimal form of θ for single agent,
then apply the obtained design to formation control for
secure cooperation. When considering one agent, we omit the
subscript i before discussing situations for multiple agents.

If θ is a bounded function of time, then the agent position
is a series of regular data about time. In this situation, it
is not difficult to predict the trajectory by methods like
ARIMA or RNN [14]. However, if θ is chosen as a random

vector sequence satisfying certain distribution, then the agent
position is random and hard to be predicted accurately
based on history trajectory data. Therefore, the randomness
design of θ is leveraged to make the trajectory unpredictable.
The probability density function (PDF) of θ is fθ(y) =
[fθ1(y), fθ2(y)]T , where θ satisfies

E(θ`) = 0, D(θ`) ≤ (σ`)2, ` = 1, 2. (4)

Let T be the update period of θ, and we suppose T =
NTTc (NT ∈ N+). During time slot [kT, (k + 1)T ], the
motion is updated for NT times, given by

x(kT + (l + 1)Tc) = x(kT + lTc) + (uc(kT + lTc) + θ(kT ))Tc,
(5)

where l = 0, 1, · · · , NT − 1.
Suppose there is an attacker, who aims to predict future

positions of the agent by observing its position every period
To. For simplicity without lossing generality, we take T =
To

1. With the notations simplified, the trajectory update from
k-th to (k + 1)-th observation of the attacker is given by

x(k + 1) =x(k) +

NT−1∑
l=0

uc(k + l
Tc
T

)Tc + θ(k)T

=x(k) + u(k, k + 1)T + θ(k)T

=x(k) + u(k, k + 1)T, (6)

where u(k, k + 1) = [u1, u2]T . Since u(k + lTcT ) is a
definite function of time, u(k, k + 1) shares the same type
of distribution with θ but different PDF, satisfying

E(u`) = u`, D(u`) ≤ (σ`)2. (7)

In order to design unpredictable trajectory, prediction
model is given here. The trajectory data obtained at t = kT
by attacker is denoted by I1:k = {z(1), · · · , z(k)}, and it
can be used for further prediction or information fusion, e.g.,
Kalman Filter. Based on I1:k, the prediction of u(k, k + 1)
is û(k, k + 1) and the posteriori estimate of x(k) is x̂(k).
Let ε(k) be the error of posteriori estimate, i.e., ε(k) =
x(k) − x̂(k) = [ε1(k), ε2(k)]T . Since ε(k) is relevant to
optimal design of θ, we divide ε(k) into two situations.

Case 1 (ε(k) ≡ 0): x̂(k) is called optimal iff optimal
posteriori estimate x̂∗(k) = x(k).

Case 2 (ε(k) is a random vector): x̂(k) is unbiased
estimation which means that E(ε) = [0, 0]T . ε(k) and
u(k, k+ 1)− û(k, k+ 1) are independent with each other at
each time. The PDF of ε is unknown and unknown variance
denotes by D(ε) = [σ2

ε1 , σ
2
ε2 ]T .

Next, the position prediction x̂(k + 1|k) is given by

x̂(k + 1|k) = x̂(k) + û(k, k + 1)T. (8)

C. Problem of Interest

Assuming the attacker aims to predict the future position
of τ steps after current time (τ ∈ N+), then the prediction
accuracy of attacker is described by

S = ‖x(k + τ)− x̂(k + τ |k)‖22. (9)

1When To is unknown, we suppose (To)min ≤ To ≤ (To)max and
then we can use similar analysis to design the control. The details will be
discussed in our future work.



We take the case of τ = 1 as basis and extend the results
to τ ∈ N+. Since S cannot be optimized directly due to its
randomness, we introduce mathematical expectation function
E(S) and probability measure Pr(S ≤ α2), respectively,
as optimization objective functions to determine the optimal
fθ(y). The problems are formulated as

P1 : max
fθ(y)

min
û(k,k+1)

E(S)

s.t. E(θ`) = 0, D(θ`) ≤ (σ`)2,
(10)

and

P2 : min
fθ(y)

max
û(k,k+1)

Pr(S ≤ α2)

s.t. E(θ`) = 0, D(θ`) ≤ (σ`)2, α ∈ R+.
(11)

Note E(S) reflects the mean deviation between the actual
and predicted positions of an agent, and Pr(S ≤ α2)
denotes the probability that the predict accuracy satisfies the
preset range. The modeling method of P1 and P2 can be
understood from two perspectives. First, they can be viewed
as optimizing the worst situations for the agent, i.e., the
smallest E(S) and the largest Pr(S ≤ α2) are the best
prediction for the attacker [15], and we need to make the
prediction less reliable. Second, they can be seen as a game
between the agent and attacker [7].

III. STOCHASTIC CONTROL DESIGN FOR ONE AGENT

In this section, we give the optimal forms of θ for P1 and
P2 to make the trajectory of one agent unpredictable.

A. Optimal Distribution of P1

Mathematically, we first give the definition of the optimal-
ity in terms of the attacker’s prediction and distribution of
θ.

Definition 1: (Optimal input prediction) When J(S) =
E(S), if ∀û(k, k + 1) ∈ R2×1,

J(fθ(y), û(k, k + 1), x̂(k)) ≥ J(fθ(y), û∗(k, k + 1), x̂(k)),

then û∗(k, k + 1) is an optimal input prediction respect to
x̂(k) in the sense of expectation.

Definition 2: (Optimal distribution) In the sense of ex-
pectation, if arbitrary fθ(y) satisfies

J(fθ(y), û∗(k, k+ 1), x̂(k)) ≤ J(f∗θ (y), û∗(k, k+ 1), x̂(k)),

f∗θ (y) is the optimal distribution.
Theorem 1: For Case 1, fθ(y) is the optimal distribution

for P1 iff
D(θ`) = (σ`)2.

Proof: The optimal distribution f∗θ (y) is obtained by
solving P1 under condition x̂(k) = x(k). We have

J =E
[
‖x(k) + u(k, k + 1)T − x̂∗(k)− û(k, k + 1)T‖22

]
=E

[
(u1 − û1)

2
]
T 2 + E

[
(u2 − û2)

2
]
T 2

=[(û1)2 − 2E(u1)û1 + (û2)2 − 2E(u2)û2

+ E(u1)2 + E(u2)2]T 2. (12)

Then, the optimal input prediction and index satisfy

û∗(k, k + 1) = arg min
û(k,k+1)

J =
[
E(u1), E(u2)

]T
,

min
û(k,k+1)

J =
{
D(u1) +D(u2)

}
T 2.

(13)

Hence, fθ(y) is optimal distribution iff it makes D(u`)
maximal. According to the relationship between θ(k) and
u(k, k + 1) given by (7), we have completed the proof.

Remark 1: Theorem 1 indicates that the larger the vari-
ances are, the harder attacker makes precise predictions,
which is consistent with our intuitions.
In order to obtain corresponding conclusion in Case 2, a
lemma is given first.

Lemma 1: Let X = [X1, X2, · · · , Xn]T and Y =
[Y1, Y2, · · · , Yn]T . Suppose that random variable Xi is in-
dependent from random variable Yi and E(Yi) = 0, i =
1, 2, · · · , n. Then, we have

E((X + Y )T (X + Y )) =

n∑
i=1

E(X2
i ) +

n∑
i=1

E(Y 2
i ).

Utilizing Lemma 1, we obtain

min
û(k,k+1)

J = [D(u1) +D(u2)]T 2 + σ2
ε1 + σ2

ε2 . (14)

Compared with the cost J of Case 1 given by (13), there
are two more terms σ2

ε1 , σ
2
ε2 in (14). Since the method to

estimate x̂(k) is unknown, it is impossible to give analytical
expression about fθ(y) to maximize E(S). Even so, the
same result in Theorem 1 is able to be obtained for Case 2
qualitatively. Note x̂(k) is calculated by fusing the prediction
x̂(k|k− 1) and the measurement z(k) at kT , therefore, ε(k)
is dependent with them. For x̂(k|k−1), larger random input
variances will increase the prediction error, which leads to
higher σ2

ε1 , σ
2
ε2 and E(S). As for z(k), an extreme case is

that the attacker takes x̂(k) = z(k). Then, D(x(k) − z(k))
is relevant to the sensing accuracy instead of the input
variances, and σ2

ε1 + σ2
ε2 becomes constant. By combining

the two factors, we obtain the same conclusion as that of
Case 1.

However, taking objective function J(S) = E(S) brings
some drawbacks. On the one hand, with E(S) representing
the mean deviation between actual and predicted positions,
when D(S) is large, S is much smaller than the mean at
some moments. On the other hand, specific function form
of fθ(y) cannot be determined. Therefore, we leverage the
probability measure as J(S) and formulate problem P2.

B. Optimal Distribution of P2

Definition 3: (Optimal input prediction) For J = Pr(S≤
α2), if ∃α1 ∈ R, ∀ û(k, k + 1) ∈ R2×1 and α ∈ (0, α1],

J(fθ(y), û(k, k + 1), x̂(k), α) ≤ J(fθ(y), û∗(k, k + 1), x̂(k), α),

then, û∗(k, k + 1) is an optimal input prediction respect to
x̂(k) in the sense of probability.

Definition 4: (Optimal distribution) In the sense of prob-
ability, if arbitrary PDF vector fθ satisfies

J(fθ(y), û∗(k, k + 1), x̂(k), α) ≥ J(f∗θ (y), û∗(k, k + 1), x̂(k), α),

then, f∗θ (y) is the optimal distribution.



Theorem 2: For Case 1, fθ(y) is the optimal distribution
in the sense of probability iff fθ1(y) and fθ2(y) are uniform
distributions with finite maximum variances, i.e.,

f∗θ`(y)=fUθ`(y)=


1

2
√

3σ`
, if y ∈ [−

√
3σ`,
√

3σ`].

0, otherwise.
(15)

The proof is omitted here due to the space limited.
Corollary 1: For Case 2, fθ(y) is the optimal distribution

iff elements of ε(k) + θ(k)T subject to the uniform distri-
butions with maximum variances and independent with each
other.

Remark 2: For both cases, the optimal distribution for P1
and P2 have the same results in variances, but solution of
P2 gives the specific form for the PDF of θ.

Note the distribution of ε(k) is unknown in practice,
making it hard to obtain minimum max

û(k,k+1)
J . But in Case

2, ε(k) will not make probability Pr(S ≤ α2) increase and
degrade the performance of random input with arbitrary PDF
fθ(y), which is guaranteed by the following theorem.

Theorem 3: Let û∗1(k, k + 1) and û∗2(k, k + 1) be the
optimal input predictions for x̂(k) 6= x∗(k) and x̂∗(k),
respectively. ∃α1 ∈ R, we have ∀α ∈ (0, α1],

J(fθ(y), û∗1(k, k + 1), x̂(k), α) ≤ J(fθ(y), û∗2(k, k + 1), x̂∗(k), α).
Proof: Let the PDF of ε(k) = x(k) − x̂(k) be fε =

[fεp , fεq ]
T . Suppose Ω = {(x, y)|(x − ûp)

2 + (y − ûq)
2 ≤

α2
T }, αT = α

T
and Ω1 = {(x, y, w, v) : (w

T
+ x − ûp)2 + ( v

T
+

y − ûq) ≤ α2
T }. Choose arbitrary α1 > 0 and for ∀α ∈

(0, α1], û1(k, k + 1) ∈ R2, it follows that

J(fθ(y), û1(k, k + 1), x̂(k), α)

=Pr{‖ 1

T
(x(k)− x̂(k)) + u(k, k + 1)− û(k, k + 1)‖22 ≤ α2

T }

=

∫∫
R2

fεp(w)fεq (v)(

∫∫
Ω1

fp(x)fq(y) dxdy) dwdv

≤ max
û(k,k+1)

∫∫
Ω

fp(x)fq(y) dxdy ·
∫∫
R2

fεp(w)fεq (v) dwdv

= max
û(k,k+1)

∫∫
Ω

fp(x)fq(y) dxdy

=J(fθ(y), û∗2(k, k + 1), x̂∗(k), α).

The equations above also holds for û∗1(k, k+1) and Theorem
3 has been proved.

By combining the results of P1 and P2, we choose
fθ = fUθ , given by (15). The reasons are as follows: i) fUθ
is the optimal distribution for P1 and Case 1 in P2. ii) For
Case 2 in P2, the PDF of ε(k) is unknown and the optimal
distribution cannot be achieved. When E(ε(k))� E(θ(k)T )
and D(ε(k))� D(θ(k)T ), which is reasonable in practice,
fUθ is the approximately optimal. Besides, ε(k) will not
degrade the performance of random input with fUθ .

Remark 3: For τ ∈ N+, we only need to change the
(k, k + 1) into (k, k + τ) in above formulation. Then, the
same theoretical results still hold for P1. And for P2, it is
straightforward to induce in the best distribution is given by
τ−1∑
n=0

θ`((k+n)T ) ∼ U [−
√

3τσ`,
√

3τσ`]. Note that fθ(y) is

not uniform and should be redesigned if τ is estimable, or we

take θ`((k + n)T ) ∼ U [−
√

3σ`,
√

3σ`](n ∈ N) otherwise.
Then, the random control sequence is not optimal for Case
1 whose performance will degrade. An extreme example is

that when τ is large enough,
τ−1∑
n=0

θ`((k + n)T ) obeys the

normal distribution N (0, τ(σ`)2) approximately, according
to the famous central limit theorem.

IV. STOCHASTIC CONTROL FOR FORMATION CONTROL

When stochastic control designed is adopted by agents
in formation, their trajectories are hard to be predicted
accurately. However, since random motion of one agent
has an effect on others by interactions, the performance
of formation convergence is degraded inevitably, which is
studied in this part.

A. Formation Convergence Level
To achieve formation control, we set vi = v0 (i =

1, 2, · · · , N) and introduce a virtual agent with input v0
as the reference. Denote ∆i = [∆1

i ,∆
2
i ]
T as the desired

relative displacement of agent i to the virtual agent. We use
a classical consensus-based formation control protocol by

gi(x1, · · · , xN ) = γi
∑
j∈Ni

aij((xj(lTc)−∆j)− (xi(lTc)−∆i)).

(16)
When θi = 0, G must have at least one spanning tree and
Tcγidi < 1 holds to guarantee formation convergence.

We define the convergence level as E(Jf ), where Jf is
the deviation between the real and desired formation, given
by

Jf =
1

4

N∑
i=1

N∑
j=1

wij‖(xi−x0)−(xj−x0)−(∆i−∆j)‖22, (17)

where wij = wji ≥ 0 and wii = 0.
Suppose the convergence level for θi = 0 is Jf0 . When

θi is added, the convergence level is Jf1 . The performance
degradation is ∆Jf = Jf1 −Jf0 . In order to give expression
of ∆Jf , Jf0 and Jf1 are calculated separately by (17).

B. Convergence Level without Stochastic Input
When there is no stochastic input, by (1) and (16), the

global dynamics of the formation is formulated as

X`((k + 1)Tc) = (I − TcΓL)X`(kTc) + v`0(kTc)Tc 1 + Tc∆
`
X ,

(18)
where X` = [x`1, · · · , x`N ]T ∈ RN , Γ = diag(γ1, · · · , γN ),
(I−TcΓL) is marginally stable, and ∆`

X ∈ RN is given by
(∆`

X)i = −γi
∑
j∈Ni

aij(∆
`
j −∆`

i). Then, we obtain

X`((k + 1)T ) =Tc

NT−1∑
j=0

(I − TcΓL)NT−j−1v`0(kT+jTc) · 1

+GX`(kT ) +H∆`
X , (19)

where G = (I−TcΓL)NT is stable and H = Tc
NT−1∑
j=0

(I−

TcΓL)NT−j−1.
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Let dwi =
N∑
j=1

wij and Dw = diag(dw1
, · · · , dwN ). At

time kT , the formation convergence level Jf0 is calculated
by

Jf0 = (
1

2
m1TQm1 + rTm1 + s) + (

1

2
m2TQm2 + rTm2 + s),

(20)
where Q=Dw−[wij ]=Dw−W . We have lim

k→+∞
Jf0 =J∗f0 =

0, i.e., the expected formation is formed.

C. Performance Degradation with Stochastic Input
Next, we consider the formation control with stochastic

input. Then, the global dynamics of (19) is reformulated as

X`((k + 1)T ) =Tc

NT−1∑
j=0

(I−TcΓL)NT−j−1v`0(kT+jTc) · 1

+GX`(kT ) +H∆`
X +HΘ(kT ). (21)

Since E(Θ(kT )) = 0, we have X`(k) ∼ (m`(k), P `(k))
with unknown distribution. The evolutions of the mean and
covariance are{

m`(k + 1) =Gm`(k) +H∆`
X ,

P `(k + 1) =GP `(k)GT +HΛ`HT ,
(22)

where Λ` = diag((σ`1)2, · · · , (σ`N )2).
Similar to the proof in [16], we have

Jf1 =(
1

2
m1TQm1 + rTm1 + s)+

1

2
tr(QP 1(k))

+(
1

2
m2TQm2 + rTm2 + s)+

1

2
tr(QP 2(k)).

(23)

Then, ∆Jf is given by

∆Jf = Jf1 − Jf0 =
1

2
tr(QP 1(k) +QP 2(k)). (24)

Since G ≥ 0, the P ` in (22) is convergent, i.e., lim
k→+∞

P ` =

P `,∗, and we have

∆J∗f = lim
k→+∞

∆Jf =
1

2
tr(QP 1,∗ +QP 2,∗). (25)

In terms of how to design the variances for each agent,
there are mainly three factors that need to be taken into
consideration, i.e., formation convergence performance, extra
energy consumption and security improvement. The extra
energy consumption Jc by adding random input is directly
proportional to variances. And we take min

û(k,k+1)
E(S) to de-

scribe security improvement, which is expressed analytically.
Let σi = [σ1

i , σ
2
i ]T and c1, c2 be weights. Then, the variances

is determined by

min
σ1,··· ,σN

∆J∗f + c1Jc − c2 min
û(k,k+1)

E(S), (26)
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(b) Safe index values when τ = 1
with smoothing processing.
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(c) Safe index values when τ = 4
without smoothing processing.
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(d) Safe index values when τ = 4
with smoothing processing.

Fig. 2: Safe index corresponding to uniform distribution
inputs with different variances.

In addition to variances, the distribution form of θ also
needs to be reconsidered. By (21), fθi (i = 1, 2, · · · , N)
should be designed such that HΘ subjects to uniform distri-
bution. Based on the variances and distribution, the unpre-
dictable trajectory design for multiple agents is obtained.

V. SIMULATION

A. One Agent with Stochastic Input

Consider an agent moves from the starting point (0,0)
towards the target (20,20). Its velocities along two axes are
both 0.5 units/s and velocity thresholds are 1 unit/s. Control
period is Tc = 0.1s and T = To = 1s for the random input.

Figure 1 illustrates path complexity of agent motion with
stochastic input. Random input θ subjects to uniform dis-
tribution with mean 0 and variance (σ`)2 = ( 0.4√

3
)2, and

the trajectory of the agent becomes irregular after adding
θ. The original path and target region is extremely hard to
be inferred from the historical trajectory data even if the
attacker has prior knowledge of uniform distribution.

Figure 2 displays relationship between values of random
variable S during agent motions and variances of stochastic
inputs, which verifies the theorem 1. The random input-
s for agent are all uniform and variances are set to be
(σ`)2 = 0, ( 0.2√

3
)2 and ( 0.4√

3
)2, which verifies the theorem 1.

Figure 2(b), 2(d) are achieved by smoothing data in Figure
2(a), 2(c) by S(k) = 1

3 (S(k − 1) + S(k) + S(k + 1)).
We suppose the measurement of attacker satisfies x(k) −
z(k) ∼ N (0, 0.01). Besides, the attacker uses Kalman
filter algorithm to obtain agent position. In the algorithm,
variances of process noise and observation noise are set to
be [( 0.4√

3
)2, ( 0.4√

3
)2]T , [0.01, 0.01]T respectively. For predic-

tion, the attacker achieves the the optimal input prediction
û∗(k, k + 1) = 0.5. The curve fluctuation is due to random
motion. It is alleviated when larger τ or average value of S
in a fixed time window is considered.



TABLE I: Contrast of input with different distributions
E(S) D(S) Pr(S ≤ 0.052) Pr(S ≤ 0.12) Pr(S ≤ 0.152)

Uniform 0.1104 0.0062 0.2549 0.4783 0.7263
Gaussian 0.1041 0.0114 0.3824 0.6255 0.7747
Laplace 0.1145 0.0354 0.4734 0.6759 0.7816
No input 0.0 0.0 1.0 1.0 1.0
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(a) t = 30s, formation control
without security consideration.
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(b) t = 30s, formation control with
security consideration.

Fig. 3: Illustration of N = 5 agents in formation.

Table I contrasts indexes of S when the agent is added
by stochastic control with the same variance (σ`)2 = ( 0.4√

3
)2

but three kinds of distributions or not. We let agent keep
moving and total observation time of the attacker is 500s
which is long enough. The position estimation and input
prediction are the optimal here. From the table, the mean
of S is almost identical for three distributions which is
close to

{
(σ1)2 + (σ2)2

}
T 2 = 0.1067. But the uniform

distribution has minimum Pr(S ≤ α2) when α is in suitable
range, which verifies the Theorem 2. Moreover, although
Pr(S ≤ α2) is taken as index, D(S) corresponding to
uniform distribution is the lowest. When E(S) values are the
same, smaller fluctuations will lead to higher safety levels.
These results reflects advantage of formulated P2 and best
performance of random input with uniform distribution.

B. Agents in Formation with Stochastic Input

Suppose that each agent in formation satisfy the condition
for single agent above. The formation is form in a consensus-
based method given by (16) with γi = 1

2(1+di)
and N = 5.

The initial positions of five agents are (2,1), (-5,3), (-4,-3),
(1,-3) and (0,0). The desired formation is described by ∆1 =
[−2,−4,−3,−1, 0]T and ∆2 = [2, 0,−1.5,−1.5, 0]T . We
set the same variances σ along two axes for all agents.

Figure 3 shows the formation of five agents. In figure
4(a), the performance degradation ∆Jf is converged to ∆J∗f
with time. Under random inputs, the error relative to desired
formation Jf fluctuates and performance degradation equals
to deviation between expectation of Jf and original Jf0 .
Figure 4(b) demonstrates∆Jf increase with σ2, serving as
the criterion for choosing the variance for the formation.

VI. CONCLUSION

In this paper, we investigate unpredictable trajectory de-
sign for mobile agents against malicious attacker. We start
with the situation for one agent, by adding an extra input to
guarantee the unpredictability. Then, two objective functions
insensitive to prediction algorithms are proposed as safety
indexes to achieve the optimal control. We prove that the
input with uniform distribution and maximum variance is
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Fig. 4: Performance degradation with random inputs.

the optimal for both problems. Moreover, we reveal that the
estimate errors by attacker will not decrease safety indexes.
Furthermore, we extend our results to formation control of
multiple agents, where the performance degradation of for-
mation convergence is quantified and the stochastic control
is redesigned to obtain trade-off between cooperation and
security. Finally, simulations are conducted to illustrate and
verify the effectiveness.
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