RoboSurv v1.0 Evaluation, Optimization on Markov Chains

Han Wang

Version 1.0 of Nov. 2019

Contents
1__Introduction of RoboSurvi 3
[2__Installationl
2.1 Matlab Installationl L 3
2.2 Julia Installationl 4
[3 (Getting Started| 4
[4 Mathematical Details and Usage| 5
4.1 Kemeny Constant| e 6
4.1.1 Kemeny Constant Evaluationl 0. 6
4.1.2 Kemeny Constant Optimization|. 6
4.2 Mixing Time| e 7
4.2.1 Mixing Time Evaluation| 0 7
4.2.2 Mixing Time Optimization| 7
4.3 Return Time Entropy| 8
4.3.1 Return Time Entropy Computation| 8
4.3.2 Return Time Entropy Optimization| 9
4.4 Entropy Rate| o 9
4.4.1 Entropy Rate Computation| 9
4.4.2 Entropy Rate Optimization| 10
[4.5 stationary Distribution|. 10
[5_Technical Details and Check Function| 10
5.1 Variable and Method Definition| o 11
b.2 Legal Markov Chain| 12
5.3 Irreducibility] e 13
b.4 Legal Option| o e 14

5.5 Detfault Weighted Matrix| 14

5.6 Symmetric Matrix| 15
6.7 Dimension Matchl 16
5.8 Legal stationary Distribution| o oo o 17
[5.9 Integer and non-negative(duration) L 19
[6 Efficiency Computation| 20
[7__Referencel 20

Abstract

We develop open source Matlab & Julia software toolbox RoboSurv for calculating and opti-

mizing a bunch of quantities and metrics related to Markov chains

1 Introduction of RoboSurv

RoboSurv is intended to calculate and optimize a bunch of quantities and metrics that are related to
Markov chains. It is motivated by the use of Markov chains in robotic applications where one or a
group of robots randomly move on a graph to perform surveillance tasks.These stochastic surveillance
strategies for quickest detection of anomalies or intelligent intruders in network environments. To
solve this problem, different algorithms have been proposed. In this package we implement five
different algorithms to calculate and optimize related quantities and metrics: mixing time[1], hitting
time probability[2], Kemeny constant[2], entropy rate[3] and return time entropy[4].

In the optimization part, for solving non-convex optimization problems, we use fmincon[5] with
sqp solver in Matlab and JuMP[6] with Ipopt solver in Julia. Users also are provided with to solve
semidefinite programming (SDP) with CVX]7] in Matlab and Convex.jl[8] in Julia. For details of the

optimization solver, the users are referred to the above references.

2 Installation

RoboSurv is a software toolbox which has both Matlab and Julia versions. Source code can be found

at
https://github.com/HanWang99

The installation and using method are for Matlab and Julia, and we will introduce the usage

respectively.

2.1 Matlab Installation

The package has been packed up into a toolbox file, named Robot Surveillance.mtblx, so that
the users just need to download that into their own workspace and double click it, then matlab will

automatically install the toolbox into toolspace. It can be downloaded here:
https://github.com/HanWang99/RoboSurv/tree/master/Robot-Surveillance-Matlab

For more details about how to use and manage the toolboxes, reader is referred to

https://www.mathworks.com/help/matlab/matlab_prog/

create—-and-share-custom—-matlab-toolboxes.html

The package contains several m-files, user can also download all these files and add them into

workspace to use the package.

https://github.com/HanWang99
https://github.com/HanWang99/RoboSurv/tree/master/Robot-Surveillance-Matlab
https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-toolboxes.html
https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-toolboxes.html

2.2 Julia Installation

The package has also been packed up, readers just need to use e.g. Julia’s command
Pkg.add(” https://github.com/HanWang99/RoboSurv. git”)

or enter “]”

into package mode, then use e.g. Julia’s command
add https://github.com/HanWang99/RoboSurv. git

Then the package can be automatically added to Julia work path. It should be noted that com-
pared with Matlab, Julia doesn’t have preinstalled packages, e.g. linear algebra package, optimization
package and so on. It may take a long time for users without these necessary packages to install our
toolbox because of the installing dependencies process. After successfully installing the package, user

need to enter e.g. Julia’s command to use
using MarkovChian

Now all the functions can be used.

3 Getting Started

Please type the command
>>test
In Matlab to run the basic example that follows.

To calculate the Kemeny constant[3] of a probability transition matrix, which is defined by
Ky =nl(PoW)1,K, (1)
where Ky is weighted Kemeny constant, and K is defined by
K = Tr{(1 — I2PIY2 4 gq")) @

where P is the input probability transition matrix, using 7 to represent the stationary distribution

of the probability transition matrix, then
I = diag[], (3)
and

qT: (ﬁa"'?ﬁ)? (4)

in the test file, weighted matrix and probability transition matrix is defined as:

>SW =[0 2 2 6 5 0 0 5
8 7 4 0 8 8 7
10 10 0 10 0 0 4 8;

Table 1: Options of Computation and Optimization

Computation Optimization

Mixing Time MixingTime MixingTimeOp
Kemeny Constant Kemeny KemenyOp
Hitting Time HittingTime HittingTimeOp
Return Time Entropy | ReturnTimeEntropy | ReturnTimeEntropyOp
Entropy Rate EntropyRate EntropyRateOp
10 8 10 6 4 8 10 3;
) 0 0 3 3 5 0 4;
0 10 0 6 6 0 6 9;
0 9 2 7 0 9 0 0;
4 4 6 5) 6 5 0 4]

>>P =[-0.0000 0.1000 0.1000 0.1000 0.1000 0.000 0.0000 0.6000;
0.1000 0.1000 0.1000 0.4000 0.0000 0.1000 0.1000 0.1000;
0.6000 0.1000 0.0000 0.1000 0.0000 0.0000 0.1000 0.1000;
0.1000 0.3000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000;
0.1000 0.0000 0.0000 0.1000 0.1000 0.6000 0.0000 0.1000;
0.0000 0.1000 0.0000 0.1000 0.6000 0.0000 0.1000 0.1000;
0.0000 0.7000 0.1000 0.1000 0.0000 0.1000 0.0000 0.0000;
0.1000 0.1000 0.4000 0.1000 0.1000 0.1000 0.0000 0.1000;]

Then, the Kemeny constant of the graph is

>>F Kem
F_ Kem =

51.3840

4 Mathematical Details and Usage

RoboSurv has two integrated function MC_COMP (X,0Option) and MC_OP(X,Option) to call

every calculation and optimization function. Available options are listed as follow: It should be noted

that, for Matlab, the format of function calling is

F=MC.OP(X, "Option ")
and for Julia, the format is
F=MC.OP(X,” Option”)

The differences lie between ” and ””.

4.1 Kemeny Constant
4.1.1 Kemeny Constant Evaluation

For this part, mathematical details are referred to part three. The function prototype is defined as
Kemeny (P ,W)

and then, the users just need to use MC_COMP (P,W,’Kemeny’) in Matlab or MC_COMP (P,W,” Kemeny”)
in Julia. W has a default value of one correspond to non-zero entries in P and zero, otherwise. Return

value of the function is a float number.

4.1.2 Kemeny Constant Optimization

To optimize Kemeny constant for given adjacent matrix, weighted matrix and stationary distribution,

the problem can be formulated by
min (7T (P)L,)(Tr[(I = IIV2PIT 2 + g¢™) 1))
n

subject to ZPM = 1,for eachi € 1,...,n
j=1
T;Pij = T;iDij, for each(i,j) ek
0 <pi; <1,for each(i,j) € E
pij = 0,for each(i,j) ¢ £

This problem is a non-convex optimization problem, we first convert the constraint into formal equality

constraint, inequality constraint and non-linear constraint.

A1P < blvAeqP = beq
nonlconl(P) <0

(6)

Using Rushabh_eva(x,PI,W) to calculate the object value which is to be minimized, and then, using

fmincon to solve this problem in Matlab. The function prototype is defined as
kemenyOp (A, PT W)
and then, user just need to use MC_COMP(A,PI,W ’Kemeny’) in Matlab or MC_COMP (A ,PI,W,” Kemeny”)

in Julia. W has a default value of one correspond to non-zero entries in P and zero, otherwise. Return

value of the function is optimized probability transition matrix and maximum Kemeny constant.

[y,f] = fmincon (@Q(x)Rushabh_eva(x,PI , W) ,x0,Al1,bl,
A_eql,b_eql ,[],[] ,@nonlconl,options);

using JuMP to solve this problem in Julia

model=Model (with_optimizer (Ipopt.Optimizer))
@variable (model ,P[i=1:n"2])
register (model, :Rushabh_ eva, n"2, Rushabh_eva; autodiff = true)
JuMP. register (model, :nonlconl, n"2, nonlconl, autodiff=true)
@objective (model ,Min, Rushabh_eva(P...))

@constraint (model , A_eqxP.==b _eq)

@constraint (model ,AlxP.<=b1)

@NLexpression (model ,my_expr ,nonlconl (P...))

@NLconstraint (model ,my_constr ,nonlconl (P...)==0)

JuMP. optimize ! (model)

4.2 Mixing Time
4.2.1 Mixing Time Evaluation

Mixing time of a graph is the second largest absolute engine value of the Laplacian matrix, which can
be written as

p(P) = max [\ (P)| = max{Aa(P), ~An(P)} (7)
The function prototype is defined as
MixingTime (P)

and then, user just need to use MC_COMP (P,’"MixingTime’) for Matlab or MC_COMP (P,” MixingTime”)

for Julia. W has a default value of one correspond to non-zero entries in P and zero, otherwise.

4.2.2 Mixing Time Optimization

For given adjacent matrix, we can calculate a correspond probability transition matrix with maximum

second largest absolute engine value, the problem can be formulated by
min p(P) =[P — (1/n)117 |,
subject to P >0,P1=1,P=PT (8)

The optimization object is non-convex, but the problem can be rewritten in SDP form as follow
minimize s
subject to —sI < P — (1/n)117 < sI,
P>0,P1=1,P=PT
Py =0,(i,j) ¢ E
To solve this kind of problem, CVX in Matlab and Convex.jl in Julia are perfect tools. Actually those

9)

are both developed from Prof. Stephan Boyd’s group. The function prototype is defined as

MixingTimeOp (A)

and then, user just need to use MC_COMP (A ,’MixingTimeOp’) for Matlab or MC_COMP (A,” MixingTimeOp”)
for Julia. W has a default value of one correspond to non-zero entries in P and zero, otherwise. Re-

turn value of the function is optimized probability transition matrix and maximum second largest

absolute engine value.

4.3 Return Time Entropy
4.3.1 Return Time Entropy Computation

Return Time Entropy of a graph is defined as
J(P) = ZWUH(Tii) (10)
=1

wherer; is the i — th entry of stationary distribution, H(T};) is return time entropy of state i, formula

is given as

H(T3) = — iP(Tn‘ = k)logP(Tii = k)
k=1 (11)

== Fi(i,i)log Fi(i,)
k=1

T;;represents the first time the random walk reaches node j starting from node i, that is
k—1

Ty = min{ > wx,, x,.,,|Xo =16, Xp =4,k > 1} (12)
k'=0

The function prototype is defined as
ReturnTimeEtropy (P,W, yeta)

and then, user just need to use MC_COMP(P,W yeta,’ReturnTimeEntropy’) for Matlab or

MC_COMP(P,W,yeta,” ReturnTimeEntropy”) for Julia. Weighted matrix W has a default value of
one correspond to non-zero entries in P and zero, otherwise. It should be noted that in simulation, we
cannot calculate the entropy with k& — 400, thus, a truncation accuracy parameter 7 is introduced

to help calculation. 7 is user defined, but it must lie between 0 and 1.

4.3.2 Return Time Entropy Optimization

For given weighted matrix(or just adjacent matrix), stationary distribution, truncated parameter and
lower bound of probability transition matrix, we can calculate optimal probability transition matrix

with maximum return time entropy. The problem can be formulated by

maximize Jtrunen (P) (13)
subject to PeF;,
whereJynen(P)is return time entropy with truncated parameter, which is defined as
Wi QL
N, = -1
K ’7777Tmzn-|
n Ny (14)
Jtrunc,n(P) = - T Fk(ly Z)k(lv Z)

=1 k=1

and Pg, . is constraint set of probability transition matrix, that is

P(Eﬂr = {P € Rnxn‘ng > € Zf(laj) ckE
pij =0if(i,j) ¢ E (15)
Pl, =1,,7'P =7xT}

We use fmincon with sqp solver in matlab to solve this problem, and JuMP with Ipopt solver in Julia,

respectively. The function prototype is defined as
ReturnTimeEntropyOp (A, PI,W, epsilon , yeta)

and then, user just need to use MC_COMP(A,PI,W epsilon,yeta, ReturnTimeEntropyOp’) for Matlab
or MC_COMP(A,PI,W epsilon,yeta,” ReturnTimeEntropyOp”) for Julia. Weighted matrix W has a
default value of one correspond to non-zero entries in P and zero, otherwise. Return value of the
function is optimized probability transition matrix and maximum return time entropy.

User should be noticed that, if a very small n is chosen, the optimization time can be extremely

long. An acceptable value is usually bigger than 0.01.

4.4 Entropy Rate
4.4.1 Entropy Rate Computation
Entropy rate of a probability transition matrix is defined as
n
He(P) ==Y mpijlogpi (16)
ij=1

Where m_i is the i-th value of stationary distribution and p_ij represents the entry of probability

transition matrix P. The function prototype is defined as

EntropyRate (P)

and then, user just need to use MC_COMP (P,’EntropyRate’) for Matlab or MC_COMP(P,” EntropyRate”)
for Julia.
4.4.2 Entropy Rate Optimization

For given adjacent matrix A and stationary distribution PI, we can calculate optimal probability

transition matrix P with maximum entropy rate. The problem can be modeled as

max H,(P)
subject to P>0
pij =0,if a;; =0 (17)
P1,=1,
alp=gT

We use fmincon with sqp solver in matlab to solve this problem, and JuMP with Ipopt solver in Julia,

respectively. The function prototype is defined as
EntropyRateOp (A, PI)

and then, user just need to use MC_COMP (A, PI,’EntropyRateOp’) for Matlab or
MC_COMP(A,PL,”EntrpyRateOp”) for Julia. Weighted matrix W has a default value of one cor-
respond to non-zero entries in P and zero, otherwise. Return value of the function is optimized

probability transition matrix and maximum entropy rate.

4.5 stationary Distribution

The stationary distribution is the eigenvector corresponding to the eigenvalue 1 of the probability

transition matrix. The function prototype is defined as
Stadis (P)

and then, user just need to use MC_COMP(P,’Stadis’) for Matlab or MC_COMP (P,”Stadis”) for

Julia. For Julia, the return value is a vector, but not a one-column matrix!

5 Technical Details and Check Function

There are several parameter check functions in MC_COMP and MC_OP. We use some technical
method to realize successful optimization and accelerate code speed. Details can be found in following

subsections.

10

Table 2: Check Functions

Function Julia | Matlab
Legal Markov Chain v

Irreducible v v
Legal Option v v
Default Weighted Matrix v v
Symmetric Matrix (some case) v v
Dimension Match v v
Legal stationary Distribution v v
Integer and non-negative(duration) | v/ v

5.1 Variable and Method Definition

While solving optimization problem with JuMP in Julia, the variables are declared as ” VariableRef”
type, and in Julia, every entries in a matrix must be in same type. However, while solving our
optimization problem, constant and variable always coexist in a same matrix. Actually, our variable
should be a matrix which is not supported in JuMP. We use the following skills to solve this problem.

1.Split matrix into column vector.

for i=l:nxn
if rem(v_place[i+1],n)!=0
P_opt[convert (Int64 ,rem(v_place[i+1],n)),convert (Int64,floor (v_place[i+1]/n))+1]=x
else
P_opt[n,convert (Int64 , floor (v_place[i+1]/n))]=x[1]
end

end
Then, we use @QNLObjective macro in JuMP, which can accept user-defined objective function
@NLobjective (model ,Max, myfun (X...))

We use X... as input parameter because that the dimension of input matrix is not fixed.
2.Define Supervariable type.
Supervariable is a combination of VairableRef and Float, so it can be used to declare a matrix with

mixed types of data.
SuperVariable=Union{Real, VariableRef}

11

Then, we need to overload basic corresponding function with our data type.

Base.zero (:: Type{SuperVariable})=0
Base.zero (:: Type{ VariableRef})=0

Now, code can operate successfully. The reason for the overload of Base.zero() is this function
will operate during optimization. Without it, an error will throw out.
3.Use sparse matrix.
In our problem, some matrix are actually sparse with a high dimension. Thus, we convert some
matrix into sparse matrix to reduce code run time. That is why SparseArrays package exits in the

dependencies of our package in Julia.

5.2 Legal Markov Chain

We provide a function named Markov_or not() to check whether the input probability transition ma-
trix has all sum of rows equal 1 or not.
Matlab test:

>> P=[1/2 1/2 0;
1/3 1/3 1/3;
1/4 1/4 1/4;]

P =

0.5000 0.5000 0
0.3333 0.3333 0.3333
0.2500 0.2500 0.2500
>> Markov_or_not (P)
ERROR: Markov_or_not (line 5)

the matrix you input is not an illegal probability transition matrix

Julia test

julia> P=[1/2 1/2 0:;1/3 1/3 1/3:;1/4 1/4 1/4]
3 3 Array{Float64 ,2}:

0.5 0.5 0.0
0.333333 0.333333 0.333333
0.25 0.25 0.25

12

julia> Markov_or_not (P)
ERROR: the matrix you input is an illegal probability transition matrix
Stacktrace:
[1] Markov_or_not (:: Array{Float64 ,2}) at C:\ Users\hp
\.juliapro\JuliaPro_v1.1.1.1\ packages\MarkovChain\wA3Hc\ src\Markov_or_not. jl:16

[2] top—level scope at none:0

5.3 Irreducibility

We provide a function named Irreducible_or not(P) to check whether the input probability transition

matrix is irreducible or not. To realize this function, we use the concept reachability.
n
Areach = Z A (18)
i=1
If every entries of A_reach is bigger than 0, then there must exist one path between every two nodes

for graph G(A),, which means that adjacent matrix A is irreducible.
Matlab test:

>> A=[1 1 0;0 1 0;1 1 1]

A =
1 1 0
0 1 0
1 1

>> Irreducible_or_not (A)
ERROR: Irreducible_or_not (line 14)

the matrix you have input is reducible
Julia test

julia> A=[1 1 0;1 1 0;1 1 1]
3 3 Array{Int64,2}:

1 1 0
1 1 0
1 1 1

julia> Irreducible_or_not (A)
ERROR: the matrix you have input is reducible!

13

Stacktrace:

[1] Irreducible_or_not (::Array{Int64,2}) at C:\ Users\hp
\.juliapro\JuliaPro_v1.1.1.1\ packages\MarkovChain\wA3Hc\
src\Irreducible_or_not.jl:28

[2] top—level scope at mnone:0

5.4 Legal Option

We provide option check for MC_COMP and MC_OP, if user has input a non-exist option, one error
will throw out.

Matlab test:

>> MCOP([1 1;1 1], WrongOption)

ERROR: MCOP (line 63)

please input legal options!

Julia test:

julia> MCOP([1 1;1 1],” WrongOption”)

ERROR: please input legal options!

Stacktrace:
[1] MCOP (::Array{Int64,2}, ::Vararg{Any,N} where N) at C:\ Users\hp
\.juliapro\JuliaPro_v1.1.1.1\ packages\MarkovChain\wA3Hc\src\MC.OP. jl:94

[2] top—level scope at none:0

5.5 Default Weighted Matrix
As mentioned before, we support a default weighted matrix for MC_COMP and MC_OP. This is

realized by count the number of input parameter.

Matlab test:
>> P=[0 1/2 1/2;1/2 0 1/2;1/2 1/2 0]
P =
0 0.5000 0.5000
0.5000 0 0.5000
0.5000 0.5000 0

>> MC.COMP(P, 'Kemeny)

ans =

14

2.3333
>> MCCOMP(P,[0 1 1;1 0 1;1 1 0], Kemeny’)
ans =

2.3333

Julia test:

julia> P=[0 1/2 1/2;1/2 0 1/2;1/2 1/2 0]

3 3 Array{Float64 ,2}:

0.0 0.5 0.5

0.5 0.0 0.5

0.5 0.5 0.0

julia> MC.COMP(P,” Kemeny”)

2.3333333333333335

julia> MCCOMP(P,[0 1 1 ;1 0 1;1 1 0],”Kemeny”)
2.3333333333333335

5.6 Symmetric Matrix

In some cases, the input probability transition matrix and adjacent matrix are required to be sym-
metric, e.g. mixing time computation.
Matlab test:

>> P=[1/2 1/2 0;1/3 1/3 1/3;1/4 1/2 1/4]
P =

0.5000 0.5000 0
0.3333 0.3333 0.3333
0.2500 0.5000 0.2500

>> MC.COMP(P, ’ MixingTime ”)
ERROR: MCCOMP (line 51)

please input a symmetric probability transition matrix
Julia test:

julia> P=[1/2 1/2 0;1/3 1/3 1/3;1/4 1/2 1/4]

15

3 3 Array{Float64 ,2}:

0.5 0.5 0.0
0.333333 0.333333 0.333333
0.25 0.5 0.25

julia> MC.COMP(P,” MixingTime”)

ERROR: please input a symmetric probability transition matrix

Stacktrace:
[1] MCCOMP(:: Array{Float64 ,2}, ::Vararg{Any,N} where N) at C:\ Users\hp
\.juliapro\JuliaPro_v1.1.1.1\ packages\MarkovChain\wA3Hc\src \MCCOMP. j1:75

[2] top—level scope at mnone:0

5.7 Dimension Match

We provide dimension check between dimension check between probability transition matrix and
weighted matrix for MC_COMP as well as between adjacent matrix and weighted matrix for MC_OP
Matlab test:

>> P=[1/2 1/2;1/2 1/2]
P =

0.5000 0.5000
0.5000 0.5000

>>W=[1 2 3:4 5 6;7 8 9]

W =

>> MC.COMP (P ,W, 'Kemeny ")
ERROR: MCCOMP (line 127)
the dimension of probability transition matrix and weighted

matrix doesnt match

Julia test:

16

julia> P=[1/2 1/2;1/2 1/2]
2 2 Array{Float64 ,2}:

0.5 0.5

0.5 0.5

julia>W=[1 2 3:4 5 6:7 8 9]
3 3 Array{Int64,2}:

1 2 3
4 5 6
7T 8 9

julia> MC.COMP(P,W,” Kemeny”)
ERROR: the dimension of probability transition matrix and weighted
matrix doesnt match
Stacktrace:
[1] MCCOMP(:: Array{Float64 ,2}, ::Vararg{Any,N} where N) at C:\ Users\hp
\.juliapro\JuliaPro_v1.1.1.1\ packages\MarkovChain
\wA3Hc\ src \MC.COMP. j1:173

[2] top—level scope at mnone:0

5.8 Legal stationary Distribution

Input stationary distribution must fulfill:
1. Sum equals to one

2. Every entry is bigger than zero

3. Column vector

Matlab test:

>> PI=[1/2 1/3 1/4]
PI =

0.5000 0.3333 0.2500
>>A=[1 1 1;1 1 1;1 1 1]

A =

17

1 1 1

1 1 1

1 1 1
>> MC.OP(A,PI,’EntropyRateOp ")
ERROR MCOP (line 83)

the stationary distribution must be a column vector
>> PI=[1/2;1/3;1/4]
PI =

0.5000
0.3333
0.2500

>> MC.OP(A,PI,’EntropyRateOp ")
ERROR MCOP (line 86)

please input legal stationary distribution

Julia test:

julia> PI=[1/2 1/3 1/4]
3—element Array{Float64 ,2}:
0.5

0.3333333333333333

0.25

julia> A=[1 1 1;1 1 1;1 1 1]
3 3 Array{Int64,2}

1 1 1
1 1 1
1 1 1

julia> MC.OP(A,PI,” EntropyRateOp”)

FERROR: the stationary distribution must be a column vector

Stacktrace:
[1] MCOP (::Array{Int64,2}, ::Vararg{Any,N} where N) at C:\ Users\hp
\.juliapro\JuliaPro_v1.1.1.1\ packages\MarkovChain\wA3Hc\ src\MC.OP. j1:123

18

[2] top—level scope at none:0
julia> PI=[1/2;1/3;1/4]
3—element Array{Float64 ,1}:

0.5

0.3333333333333333

0.25

julia> MC.OP(A,PI,” EntropyRateOp”)

ERROR: please input legal stationary distribution

Stacktrace:
[1] MCOP (::Array{Int64,2}, ::Vararg{Any,N} where N) at C:\ Users\hp
\.juliapro\JuliaPro_v1.1.1.1\ packages\MarkovChain\wA3Hc\ src\MC.OP. j1:126

[2] top—level scope at none:0

5.9 Integer and non-negative(duration)

The duration should be a positive integer.
Matlab test:

>> tau=-—10
tau =
-10

>> MC.OP(A,W, tau,’ HittingTimeOp ’)
ERROR: MCOP (line 155)

the duration must be a non—negative integer
Julia test:

julia> tau=-10
—10

julia> MC.OP(A,W, tau,” HittingTimeOp”)

ERROR: the duration must be a non—negative integer

Stacktrace:
[1] MCOP (::Array{Int64,2}, ::Vararg{Any,N} where N) at C:\ Users\hp
\.juliapro\JuliaPro_v1.1.1.1\ packages\MarkovChain\wA3Hc\ src\MC.OP. jl1:216

[2] top—level scope at mnone:0

19

timer/s Hitting Time Computation

4.50E-03
4.00E-03

3.50E-03
3.00E-03
2.50E-03
2.00E-03
1.50E-03
1.00E-03
5.00E-04
0.00E+00

Star Graph Ring Graph Complete Random Graph Line Graph
Graph

mMatlab mJulia

Figure 1: Hitting Time Computation

6 Efficiency Computation

Code operating time can be found in Fig.1-10.

7 Reference

[1] Boyd S, Diaconis P, Xiao L. Fastest mixing Markov chain on a graph[J].SIAM
review , 2004, 46(4): 667—689.

[2] Patel R, Agharkar P, Bullo F. Robotic surveillance and Markov

chains with minimal weighted Kemeny constant[J]. IEEE Transactions on Automatic
Control, 2015, 60(12): 3156—3167.

[3] George M, Jafarpour S, Bullo F. Markov chains with maximum entropy for
robotic surveillance[J]. IEEE Transactions on Automatic Control, 2018, 64(4):
1566 —1580.

[4] Duan X, George M, Bullo F. Markov chains with maximum return time entropy
for robotic surveillance[J]. IEEE Transactions on Automatic Control, 2019.

[5] https://www.mathworks.com/help/optim/ug/fmincon.html

[6] http://www.juliaopt.org/JuMP. jl/v0.14/

[7] http://cvxr.com/cvx/

[8] https://www.juliaopt.org/Convex.jl/dev/

20

time/s

1.20E-03
1.00E-03
8.00E-04
6.00E-04
4.00E-04
2.00E-04

time/s

1.80E-03
1.60E-03
1.40E-03
1.20E-03
1.00E-03
8.00E-04
6.00E-04
4.00E-04
2.00E-04
0.00E+00

“ddldl

Star Graph Ring Graph Complete Random Graph Line Graph

Entropy Rate Computation

Graph

mMatlab mJulia

Figure 2: Entropy Rate Computation

Kemeny Computation

'FERR

Star Graph Ring Graph ¥ &siEblete Random Graph Line Graph
Graph

mMatlab mJulia

Figure 3: kemeny Constant Computation

21

time/s
12
1
038
06
04
02
0

Return Time Entropy Computation

Star Graph Ring Graph Complete Graph Random Graph Line Graph

time/s

8.00E-04
7.00E-04
6.00E-04
5.00E-04
4.00E-04
3.00E-04
2.00E-04
1.00E-04
0.00E+00

mMatlab mJulia

Figure 4: Return Time Entropy Computation

Mixing Time Computation

REER

Star Graph Ring Graph Complete Random Graph Line Graph
Graph

m Matlab mJulia

Figure 5: Mixing Time Computation

22

log(time) Hitting Time Optimization

100
10
1
lete Ran
ph
0.1
0.01
mMatlab ®Julia
Figure 6: Mixing Time Optimization
log(time) Entropy Rate Optimization
100
10
1 —_— | [|
SMraph Ring Graph Ran' Graph Li.;raph
0.1 ek
0.01

mMatlab mJulia

Figure 7: Entropy Rate Optimization

23

log(time) Kemeny Optimization

Star Graph Ring Graph Co e Graph Rar.1 Graph L-Braph

EER l) !ﬁ sy

01
mKemeny mKemeny
Figure 8: Kemeny Constant Optimization
log(time) Return Time Entropy Optimization
10000

1000
100
10

. s

Star Graph Ring Graph Complete Random Graph Line Graph
Graph

= Matlab mJulia

Figure 9: Return Time Entropy Optimization

24

log(timdF= Mixing Time Optimization

10
.
Star h Ring h Ran ph L h
Gr
01
[s |
0.01

mMatlab mJulia

Figure 10: Mixing Time Optimization

25

	Introduction of RoboSurv
	Installation
	Matlab Installation
	Julia Installation

	Getting Started
	Mathematical Details and Usage
	Kemeny Constant
	Kemeny Constant Evaluation
	Kemeny Constant Optimization

	Mixing Time
	Mixing Time Evaluation
	Mixing Time Optimization

	Return Time Entropy
	Return Time Entropy Computation
	Return Time Entropy Optimization

	Entropy Rate
	Entropy Rate Computation
	Entropy Rate Optimization

	stationary Distribution

	Technical Details and Check Function
	Variable and Method Definition
	Legal Markov Chain
	Irreducibility
	Legal Option
	Default Weighted Matrix
	Symmetric Matrix
	Dimension Match
	Legal stationary Distribution
	Integer and non-negative(duration)

	Efficiency Computation
	Reference

